É necessária uma assinatura da JoVE para visualizar este conteúdo. Faça login ou comece sua avaliação gratuita.
O objetivo deste estudo é desenvolver um novo modelo digital 3D de nódulos pulmonares que sirva como ponte de comunicação entre médicos e pacientes e seja também uma ferramenta de ponta para avaliação pré-diagnóstica e prognóstica.
A reconstrução tridimensional (3D) de nódulos pulmonares por meio de imagens médicas introduziu novas abordagens técnicas para o diagnóstico e tratamento de nódulos pulmonares, e essas abordagens estão sendo progressivamente reconhecidas e adotadas por médicos e pacientes. No entanto, a construção de um modelo digital 3D relativamente universal de nódulos pulmonares para diagnóstico e tratamento é um desafio devido às diferenças de dispositivos, tempos de disparo e tipos de nódulos. O objetivo deste estudo é propor um novo modelo digital 3D de nódulos pulmonares que sirva de ponte entre médicos e pacientes e seja também uma ferramenta de ponta para avaliação pré-diagnóstica e prognóstica. Muitos métodos de detecção e reconhecimento de nódulos pulmonares guiados por IA empregam técnicas de aprendizado profundo para capturar as características radiológicas dos nódulos pulmonares, e esses métodos podem alcançar um bom desempenho de área abaixo da curva (AUC). No entanto, falsos positivos e falsos negativos continuam sendo um desafio para radiologistas e clínicos. A interpretação e a expressão das características do ponto de vista da classificação e do exame dos nódulos pulmonares ainda são insatisfatórias. Neste estudo, um método de reconstrução contínua 3D de todo o pulmão em posições horizontal e coronal é proposto combinando as tecnologias de processamento de imagens médicas existentes. Comparado com outros métodos aplicáveis, este método permite localizar rapidamente os nódulos pulmonares e identificar suas propriedades fundamentais, ao mesmo tempo em que observa os nódulos pulmonares sob múltiplas perspectivas, fornecendo assim uma ferramenta clínica mais eficaz para o diagnóstico e tratamento de nódulos pulmonares.
A incidência global de nódulos pulmonares é variável, mas geralmente estima-se que cerca de 30% dos adultos tenham pelo menos um nódulo pulmonar visível nas radiografias detórax1. A incidência de nódulos pulmonares é maior em populações específicas, como fumantes pesados e aqueles com história de câncer de pulmão ou outras doenças pulmonares. É importante ressaltar que nem todos os nódulos pulmonares são malignos, mas uma avaliação completa é necessária para descartarmalignidade2. A detecção e o diagnóstico precoces do câncer de pulmão são cruciais para melhorar as taxas de sobrevida, e o rastreamento regular com tomogra....
NOTA: Durante o estágio de pré-processamento de dados, os dados DICOM originais devem ser classificados e interceptados para garantir a compatibilidade com vários dispositivos e resultados consistentes. A capacidade ajustável adequada deve ser reservada para o processamento da intensidade, e uma perspectiva 3D contínua é essencial para a observação. Neste protocolo, uma descrição metódica da abordagem de pesquisa é fornecida, detalhando um caso envolvendo uma paciente de 84 anos com nódulos pulmonares. Esta paciente forneceu consentimento informado para seu diagnóstico via modelagem digital e autorizou a utilização de seus dados para fins de pesquisa científi....
Para tornar o método aplicável a uma gama maior de dispositivos, a ordem de empilhamento de cada varredura precisa ser reorganizada com base nas coordenadas internas do sistema de arquivos DICOM (Figura 1) para gerar o volume 3D correto (Figura 2). Com base nos dados precisos de volume, utilizamos a reconstrução contínua algorítmica das PIMs horizontais e coronais do pulmão (Figura 4 e Figura 5) .......
Diferentes dispositivos LDCT têm diferenças significativas nas sequências de imagens DICOM que produzem, especialmente em termos de gerenciamento do sistema de arquivos. Portanto, para reconstruir o modelo digital 3D chave de um nódulo pulmonar nos estágios mais avançados do protocolo, a etapa de pré-processamento de dados é particularmente importante. Na etapa de preparação e pré-processamento dos dados (etapa 1.2.2), a coordenada do eixo z da sequência pode ser classificada corretamente usando a sequência .......
A ferramenta de software para reconstrução de modelos de nódulos pulmonares, PulmonaryNodule, é um software comercial da Beijing Intelligent Entropy Science & Technology Co Ltd. Os direitos de propriedade intelectual desta ferramenta de software pertencem à empresa. Os autores não têm conflitos de interesse a declarar.
Esta publicação foi apoiada pelo Quinto Programa Nacional de Pesquisa de Talentos Excelentes Clínicos de Medicina Tradicional Chinesa, organizado pela Administração Nacional de Medicina Tradicional Chinesa (http://www.natcm.gov.cn/renjiaosi/zhengcewenjian/2021-11-04/23082.html).
....Name | Company | Catalog Number | Comments |
MATLAB | MathWorks | 2022B | Computing and visualization |
Tools for Modeling | Intelligent Entropy | PulmonaryNodule V1.0 | Beijing Intelligent Entropy Science & Technology Co Ltd. Modeling for CT/MRI fusion |
Solicitar permissão para reutilizar o texto ou figuras deste artigo JoVE
Solicitar PermissãoThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. Todos os direitos reservados