Войдите в систему

Технологии редактирования генома позволяют ученым изменять ДНК организма путем добавления, удаления или перестановки генетического материала в определенных участках генома. Эти типы методов потенциально могут быть использованы для лечения генетических расстройств, таких как гемофилия и серповидно-клеточная анемия. Одним из популярных и широко используемых инструментов исследования редактирования ДНК, который может привести к безопасным и эффективным лекарствам от генетических расстройств, является система CRISPR-Cas9. CRISPR-Cas9 означает кластерные регулярно межпространственные короткие палиндромные повторы и связанный с CRISPR белок 9. Базовая система CRISPR-Cas9 состоит из эндонуклеазы Cas9 и небольшой РНК, которая направляет Cas9 к ДНК цели.

Происхождения

CrispR последовательности были впервые замечены в бактериях, а затем определены в археях. Исследователи обнаружили, что система CRISPR-Cas9 служит адаптивной иммунной защитой от вторжения вирусов. Многие бактерии и большинство археев захвата короткие последовательности вирусной ДНК для создания библиотеки сегментов ДНК вируса, или CRISPR массивов. Когда прокариоты повторно подвергаются воздействию одного и того же вируса или класса вирусов, массивы CRISPR используются для транскрибирования небольших сегментов РНК, которые помогают распознавать вирусных захватчиков, а затем уничтожить вирусную ДНК с Cas9 или аналогичной эндонуклеазой.

Использование технологии CRISPR-Cas9

CRISPR-Cas9 обычно используется в лаборатории для удаления ДНК и вставки новой последовательности ДНК на ее месте. Для достижения этой цели исследователи должны сначала создать небольшой фрагмент РНК, называемый направляющей РНК, с короткой последовательностью, называемой последовательностью руководства, которая связывается с определенной целевой последовательностью геномной ДНК. Руководство РНК может также ассоциироваться с Cas9 (или других эндонуклейсов, как Cpf1). Руководство РНК и Cas9 белка вводятся в ячейку, представляющие интерес, где руководство РНК определяет целевую последовательность ДНК и Cas9 расщепляет его.

Затем механизм клетки восстанавливает сломанные цепочки, внося или удаляя случайные нуклеотиды, делая целевой ген неактивным. Кроме того, в ячейку может быть введена настраиваемая последовательность ДНК вместе с направляющий РНК и Cas9, который служит шаблоном для ремонтного оборудования и заменяет вырезанную последовательность. Это очень эффективный способ для исследователей, чтобы "выбить" ген для изучения его эффекта или заменить мутировавший ген нормальной копией в надежде вылечить болезнь.

Этические и технико-экономические соображения в людях

В результате значительных возможностей модификации генов системы CRISPR-Cas9, были большие дебаты по поводу ее использования, особенно в отношении редактирования эмбрионов. Китайский ученый недавно заявил, что создал геном-редактируемых младенцев с использованием технологии CRISPR, чтобы отключить ген, участвующий в ВИЧ-инфекции. Это вызвало глобальный протест со стороны ученых, обеспокоенных этическими соображениями и соображениями безопасности процедуры. Многие назвали этот шаг преждевременным, а другие выразили озабоченность по поводу внецелевременных геномных эффектов. Хотя количество возможных биотехнологических приложений для системы CRISPR-Cas9 многочисленны, важно учитывать будущие проблемы, которые могут возникнуть в результате ее использования.

Теги
CRISPR Cas9DNA Editing ToolDefense Against VirusesBacterial GenomeCRISPR LocusTracrRNACas9 ProteinRNAseViral DNA CleavageGene TargetingGene Editing TechniquesGenome Editing Technologies

Из главы 15:

article

Now Playing

15.12 : CRISPR

Биотехнология

48.0K Просмотры

article

15.1 : Что такая генная инженерия?

Биотехнология

72.4K Просмотры

article

15.2 : Выбор антибиотиков

Биотехнология

51.6K Просмотры

article

15.3 : Рекомбинантная ДНК

Биотехнология

92.4K Просмотры

article

15.4 : Трансгенные организмы

Биотехнология

30.4K Просмотры

article

15.5 : Взрослые стволовые клетки

Биотехнология

27.7K Просмотры

article

15.6 : Стволовые клетки эмбриона

Биотехнология

26.0K Просмотры

article

15.7 : Индуцированные плюрипотентные стволовые клетки

Биотехнология

21.5K Просмотры

article

15.8 : Мутагенез in vitro

Биотехнология

13.5K Просмотры

article

15.9 : Изоляция ДНК

Биотехнология

190.0K Просмотры

article

15.10 : Генная терапия

Биотехнология

24.7K Просмотры

article

15.11 : Репродуктивное клонирование

Биотехнология

29.5K Просмотры

article

15.13 : Комплементарная ДНК

Биотехнология

28.8K Просмотры

article

15.14 : ПЦР

Биотехнология

203.3K Просмотры

article

15.15 : Геномика

Биотехнология

35.0K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены