Войдите в систему

A system's total angular momentum remains constant if the net external torque acting on the system is zero. Considering a system that consists of n tiny particles, the angular momentum of any tiny particle may change, but the system's total angular momentum would remain constant. The principle of conservation of angular momentum only considers the net external torque acting on the system. While there are internal forces exerted by different particles within the system that also produce internal torques, Newton's third law of motion states that these torques are equal and opposite in nature, and cancel each other out.

As an example of conservation of angular momentum, consider ice skaters executing a spin. The net torque acting on them is very close to zero because there is relatively little friction between the skates and the ice. Also, the friction is exerted very close to the pivot point. Both the force and its the distance from the lever arm are small, so the torque is negligible. Consequently, the ice skaters can spin for a long time. They can also increase their rate of spin by pulling their arms and legs in. When they pull their arms and legs in, it decreases their moment of inertia; thus to keep the angular momentum constant, their rate of spin increases.

It is also interesting to note that their final rotational kinetic energy increases as their moment of inertia begins to decrease. The source of this additional rotational kinetic energy is the work required to pull the arms inward. Note that the skater's arms do not move in a perfect circle—they spiral inward. This work causes an increase in the rotational kinetic energy while their angular momentum remains constant. Since they are in a frictionless environment, no energy escapes the system. Thus, if they were to extend their arms to their original positions, they would rotate at the initial angular velocity, and their kinetic energy would return to its initial value.

This text is adapted from Openstax, University Physics Volume 1, Section 11.3: Conservation of Angular Momentum.

Теги
Conservation Of Angular MomentumNet External TorqueInternal TorqueNewton s Third LawIce SkatersSpinMoment Of InertiaRotational Kinetic EnergyFrictionless Environment

Из главы 11:

article

Now Playing

11.10 : Conservation of Angular Momentum

Dynamics of Rotational Motions

9.9K Просмотры

article

11.1 : Вращающий момент

Dynamics of Rotational Motions

11.7K Просмотры

article

11.2 : Расчет чистого крутящего момента

Dynamics of Rotational Motions

8.7K Просмотры

article

11.3 : Уравнение вращательной динамики

Dynamics of Rotational Motions

4.8K Просмотры

article

11.4 : Скатывание без скольжения

Dynamics of Rotational Motions

3.3K Просмотры

article

11.5 : Прокатка с проскальзыванием

Dynamics of Rotational Motions

4.5K Просмотры

article

11.6 : Работа и мощность для вращательного движения

Dynamics of Rotational Motions

5.0K Просмотры

article

11.7 : Теорема о рабочей энергии для вращательного движения

Dynamics of Rotational Motions

5.6K Просмотры

article

11.8 : Угловой момент: одиночная частица

Dynamics of Rotational Motions

5.9K Просмотры

article

11.9 : Угловой момент: твердое тело

Dynamics of Rotational Motions

8.5K Просмотры

article

11.11 : Сохранение углового момента: применение

Dynamics of Rotational Motions

10.5K Просмотры

article

11.12 : Вращение асимметричного верха

Dynamics of Rotational Motions

769 Просмотры

article

11.13 : Гироскоп

Dynamics of Rotational Motions

2.8K Просмотры

article

11.14 : Гироскоп: прецессия

Dynamics of Rotational Motions

3.9K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены