Войдите в систему

In the middle of the nineteenth century, it was observed that two trains passing each other at a high relative speed get pulled towards each other. The same occurs when two cars pass each other at a high relative speed. The reason is that the fluid pressure drops in the region where the fluid speeds up. As the air between the trains or the cars increases in speed, its pressure reduces. The pressure on the outer parts of the vehicles is still the atmospheric pressure, while the resultant pressure difference creates a net inward force on the vehicles.

Bernoulli’s equation describes the relationship between fluid pressure and its speed. It is named after David Bernoulli (1700–1782), who published his studies on fluid motion in the book Hydrodynamica (1738). The equation is deduced by applying the principle of conservation of energy to a frictionless, steady, laminar fluid flow. Although it describes an ideal condition that fluids do not practically exhibit in real life, it almost holds true in many real-life situations and helps analyze them.

The three pressure terms in Bernoulli's equation are the fluid pressure, the kinetic energy of the fluid per unit volume, and the gravitational potential energy per unit volume. The latter two have the dimensions of pressure and are also called kinetic and gravitational energy densities. The equation states that the total pressure of the fluid, including the energy densities, is constant. As the fluid flows, the fluid pressure changes to accommodate the kinetic and gravitational energy contributions.

This text is adapted from Openstax, University Physics Volume 1, Section 14.6: Bernoulli's Equation.

Теги

Bernoulli s EquationFluid PressureRelative SpeedPressure DifferenceNet Inward ForceDavid BernoulliHydrodynamicaConservation Of EnergyFrictionless FlowLaminar FlowKinetic Energy DensityGravitational Energy DensityTotal Pressure

Из главы 13:

article

Now Playing

13.18 : Bernoulli's Equation

Fluid Mechanics

9.5K Просмотры

article

13.1 : Характеристики жидкостей

Fluid Mechanics

3.5K Просмотры

article

13.2 : Плотность

Fluid Mechanics

12.9K Просмотры

article

13.3 : Давление жидкостей

Fluid Mechanics

13.5K Просмотры

article

13.4 : Изменение атмосферного давления

Fluid Mechanics

1.8K Просмотры

article

13.5 : Закон Паскаля

Fluid Mechanics

7.8K Просмотры

article

13.6 : Применение закона Паскаля

Fluid Mechanics

7.7K Просмотры

article

13.7 : Манометры

Fluid Mechanics

2.9K Просмотры

article

13.8 : Плавучесть

Fluid Mechanics

7.3K Просмотры

article

13.9 : Принцип Архимеда

Fluid Mechanics

7.5K Просмотры

article

13.10 : Плотность и принцип Архимеда

Fluid Mechanics

6.4K Просмотры

article

13.11 : Ускоряющие жидкости

Fluid Mechanics

958 Просмотры

article

13.12 : Поверхностное натяжение и поверхностная энергия

Fluid Mechanics

1.3K Просмотры

article

13.13 : Избыточное давление внутри капли и пузыря

Fluid Mechanics

1.5K Просмотры

article

13.14 : Угол контакта

Fluid Mechanics

11.4K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены