Войдите в систему

The escape velocity of an object is defined as the minimum initial velocity that it requires to escape the surface of another object to which it is gravitationally bound and never to return. For example, what would be the minimum velocity at which a satellite should be launched from the Earth's surface such that it just escapes the Earth's gravitational field?

To calculate the escape velocity, it is assumed that no energy is lost to any frictional forces. In practice, a satellite launched from the Earth's surface not only has to escape the Earth's gravitational field, but the Earth's atmosphere slows it down as well. Thus, the escape velocity calculated purely from gravitational energy considerations is smaller than the actual escape velocity.

It is also assumed that the satellite has zero velocity at infinity, where the Earth's gravitational force is zero. Since the escape velocity does not depend on the satellite's mass, it would be the same for any object, whether a satellite or a ball.

If an object is at a larger distance from the Earth's surface, for example, the Moon, it would need a smaller velocity to escape the Earth's gravitational field. This is unless the mass is directly heading towards the Earth and collides with it, giving rise to forces that are not just gravitational.

Alternatively, the escape velocity can be calculated by equating the total energy of a system, say the Earth and a satellite, to zero. The gravitational potential energy at large distances is conventionally assumed to be zero. Since the escape velocity is defined as the minimum velocity with which a satellite should be launched from the surface, its kinetic energy at infinity can also be assumed to be zero. Of course, if it is positive, it would go further away and never return. Thus, the velocity of interest is when the kinetic energy at infinity is zero; that is, the body just escapes the gravitational field.

Calculations reveal that the escape velocity from the Earth's surface, assuming no atmosphere, is about 11 km/s. In comparison, the escape velocity from the Sun's gravitational field is about 42 km/s at the Earth's distance. Spacecraft being launched from the Earth to escape the solar system would need to consider both factors.

This text is adapted from Openstax, University Physics Volume 1, Section 13.3: Gravitational Potential Energy and Total Energy.

Теги
Escape VelocityGravitational FieldSatellite LaunchMinimum Initial VelocityGravitational Potential EnergyKinetic EnergyAtmospheric ResistanceEarthMoonSolar SystemEnergy CalculationsGravitational Forces

Из главы 14:

article

Now Playing

14.12 : Escape Velocity

Gravitation

2.5K Просмотры

article

14.1 : Тяготение

Gravitation

6.0K Просмотры

article

14.2 : Закон всемирного тяготения Ньютона

Gravitation

9.4K Просмотры

article

14.3 : Гравитация между сферически симметричными массами

Gravitation

787 Просмотры

article

14.4 : Сила тяжести между сферическими телами

Gravitation

8.0K Просмотры

article

14.5 : Координаты приведенной массы: изолированная задача двух тел

Gravitation

1.1K Просмотры

article

14.6 : Ускорение под действием силы тяжести на Земле

Gravitation

10.3K Просмотры

article

14.7 : Ускорение из-за гравитации на других планетах

Gravitation

4.0K Просмотры

article

14.8 : Кажущийся вес и вращение Земли

Gravitation

3.5K Просмотры

article

14.9 : Изменение ускорения из-за гравитации у поверхности Земли

Gravitation

2.3K Просмотры

article

14.10 : Потенциальная энергия под действием гравитации

Gravitation

2.6K Просмотры

article

14.11 : Принцип суперпозиции и гравитационное поле

Gravitation

1.1K Просмотры

article

14.13 : Круговые орбиты и критическая скорость для спутников

Gravitation

2.8K Просмотры

article

14.14 : Энергия спутника на круговой орбите

Gravitation

2.1K Просмотры

article

14.15 : Первый закон движения планет Кеплера

Gravitation

3.7K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены