Войдите в систему

Rab GTPases act in a regulated cascade during membrane fusion, helping the lipid bilayers mix. The Rab family of proteins are active when bound to GTP, and inactive when bound to GDP. Hence, they act as guanine nucleotide-dependent molecular switches. Rab-GTP recognizes and binds to long or short-range tethering proteins to capture the target vesicle. These tethers coordinate with SNAREs on the vesicle and the target membrane to assemble the trans SNARE complex that locks the mixing bilayers.

Rabs recruit a unique set of peripheral proteins called Rab effectors that mediate vesicle movement and regulate membrane traffic in their associated compartments, thus establishing a distinctive subcellular localization pattern. One Rab recruits the corresponding GEF that sequentially activates the next Rab along a Rab cascade pathway in its GTP-bound active state. In the cascade, Rab GAPs work in a fashion countering the Rab GEFs to complete the Rab conversions. Scientists describe this hypothesis that in a pathway, the activation of one Rab will recruit the GAP that inactivates the preceding Rab, thus reducing the overlap between adjacent Rab domains in a pathway.

Rab cascades establish the order of compartments during cargo progression between the organelles in the secretory pathway. Rab domains contact their effectors in a sequence, generating directional Rab cascades. The discovery of Rab cascades in the Golgi and the possible homotypic fusion of all membrane-bound Golgi compartments have led to a new model for protein transport in the Golgi.

Теги
Rab GTPasesMembrane FusionLipid BilayersGuanine Nucleotide dependent SwitchesRab GTPTethering ProteinsSNAREsTrans SNARE ComplexRab EffectorsVesicle MovementMembrane TrafficGEF guanine Nucleotide Exchange FactorGAP GTPase activating ProteinCargo ProgressionSecretory PathwayGolgi Compartments

Из главы 17:

article

Now Playing

17.8 : Rab Cascades

Intracellular Membrane Traffic

2.6K Просмотры

article

17.1 : Введение в мембранный трафик

Intracellular Membrane Traffic

6.1K Просмотры

article

17.2 : Везикулы с покрытием COP

Intracellular Membrane Traffic

7.1K Просмотры

article

17.3 : Везикулы, покрытые клатрином

Intracellular Membrane Traffic

6.2K Просмотры

article

17.4 : Фосфоинозитиды и ПИП

Intracellular Membrane Traffic

6.0K Просмотры

article

17.5 : Сборка покрытия и ГТФазы

Intracellular Membrane Traffic

3.4K Просмотры

article

17.6 : Отщипывание покрытых пузырей

Intracellular Membrane Traffic

2.8K Просмотры

article

17.7 : Белки Rab

Intracellular Membrane Traffic

3.7K Просмотры

article

17.9 : SNAREs и сплавление мембран

Intracellular Membrane Traffic

8.0K Просмотры

article

17.10 : Везикулярные трубчатые скопления

Intracellular Membrane Traffic

2.2K Просмотры

article

17.11 : Путь извлечения ER

Intracellular Membrane Traffic

3.5K Просмотры

article

17.12 : Аппарат Гольджи

Intracellular Membrane Traffic

10.3K Просмотры

article

17.13 : Гликозилирование белка

Intracellular Membrane Traffic

6.3K Просмотры

article

17.14 : Протеогликаны

Intracellular Membrane Traffic

3.8K Просмотры

article

17.15 : Сборка олигосахаридов

Intracellular Membrane Traffic

2.7K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены