Войдите в систему

Wilhelm Rudolph Fittig discovered the pinacol coupling reaction in 1859. It is a radical dimerization reaction and involves the reductive coupling of aldehydes or ketones in the presence of hydrocarbon solvent to yield vicinal diols.

Figure1

The radical reaction is initiated by a single electron transfer from metals like sodium and magnesium to a spin-paired molecule like aldehydes or ketones to generate a ketyl—a radical anion. The ketyl has a radical character on the carbon atom and a charge on the oxygen atom. Its resonance form has aradical positioned on the oxygen atom and a charge on the carbon atom.

The behavior of ketyl is greatly influenced by the solvent in which the reaction is carried out.

Protic solvents, like ethanol, protonate the ketyl. This is followed by a second electron transfer from metal to give an alkoxide anion. Further, the acidification of an alkoxide anion forms alcohol. Here, the metal dissolves with the reaction, acting as a source of free electrons.

In the presence of aprotic solvents, like benzene or ether, ketyl radical anions do not undergo protonation due to the absence of protons. This promotes ketyl dimerization and forms a part of the famous pinacol coupling reaction.

Interestingly, metals like magnesium, aluminum, or sodium, favor the reaction by forming covalent metal-oxygen bonds, which coordinate with several ketyl radicals, reacting rapidly to form a diol. Notably, the electrostatic repulsions between the negative charges of the ketyls do not hamper dimerization. In summary, protic solvents favor the formation of alcohol, while aprotic solvents favor vicinal diols.

Теги

Vicinal DiolsReductive CouplingPinacol CouplingRadical DimerizationAldehydesKetonesKetyl RadicalElectron TransferProtic SolventsAprotic SolventsAlkoxide AnionDiol FormationHydrocarbon Solvent

Из главы 20:

article

Now Playing

20.25 : Vicinal Diols via Reductive Coupling of Aldehydes or Ketones: Pinacol Coupling Overview

Radical Chemistry

1.7K Просмотры

article

20.1 : Радикалы: электронная структура и геометрия

Radical Chemistry

3.8K Просмотры

article

20.2 : Спектроскопия электронного парамагнитного резонанса (ЭПР): органические радикалы

Radical Chemistry

2.3K Просмотры

article

20.3 : Формирование прикорней: обзор

Radical Chemistry

2.0K Просмотры

article

20.4 : Образование радикалов: гомолиз

Radical Chemistry

3.3K Просмотры

article

20.5 : Формирование радикалов: абстракция

Radical Chemistry

3.3K Просмотры

article

20.6 : Образование прикорней: сложение

Radical Chemistry

1.6K Просмотры

article

20.7 : Образование радикалов: Элиминация

Radical Chemistry

1.6K Просмотры

article

20.8 : Радикальная реакционная способность: обзор

Radical Chemistry

1.9K Просмотры

article

20.9 : Радикальная реактивность: стерические эффекты

Radical Chemistry

1.8K Просмотры

article

20.10 : Радикальная реакционная способность: эффекты концентрации

Radical Chemistry

1.5K Просмотры

article

20.11 : Радикальная реакционная способность: электрофильные радикалы

Radical Chemistry

1.8K Просмотры

article

20.12 : Радикальная реакционная способность: нуклеофильные радикалы

Radical Chemistry

2.0K Просмотры

article

20.13 : Радикальная реакционная способность: внутримолекулярная vs межмолекулярная

Radical Chemistry

1.7K Просмотры

article

20.14 : Радикальное автооксидирование

Radical Chemistry

2.1K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены