Войдите в систему

The intensity of a signal, which can be represented by the area under the peak, depends on the number of protons contributing to that signal. The area under each peak is shown as a vertical line called an integral, with the integral value listed under it, as seen in the proton NMR spectrum of benzyl acetate. Each integral value is divided by the smallest integral value to obtain the ratio of the number of protons producing each signal. The ratio reveals the relative number of protons and not the absolute number. Multiplying by two and rounding off gives the actual ratio for benzyl acetate, which is 5:2:3. Comparing the integration values with the spectrum reveals that the peaks at 7.3, 5.1, and 2 ppm correspond to the five aryl, two benzyl, and three methyl protons, respectively. Because compounds such as ethyl chloride (C2H5Cl) and diethyl ether (H5C2–O–C2H5) would yield the same ratio and have similar NMR spectra, these situations are resolved by applying other spectroscopic techniques. In the NMR spectrum of a mixture of compounds, the intensity of each spectrum is relative to its concentration in the mixture. This is why the addition of less than 5% of TMS (with 12 equivalent protons) yields an intense signal at 0 ppm, without dwarfing the sample signal.

Теги
1H NMRSignal IntegrationProton NMR SpectrumIntegral ValueBenzyl AcetateProton RatioAryl ProtonsBenzyl ProtonsMethyl ProtonsEthyl ChlorideDiethyl EtherSpectroscopic TechniquesTMS Signal

Из главы 8:

article

Now Playing

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Просмотры

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

528 Просмотры

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Просмотры

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Просмотры

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Просмотры

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

994 Просмотры

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Просмотры

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Просмотры

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.8K Просмотры

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

828 Просмотры

article

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

893 Просмотры

article

8.15 : Spin–Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

884 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены