Войдите в систему

Coupling interactions are strongest between NMR-active nuclei bonded to each other, where spin information can be transmitted directly through the pair of bonding electrons. While nuclei polarize their electrons to the opposite spins, the bonding electron pair has opposite spins. Configurations with antiparallel nuclear spins are expected to be lower in energy. When coupling makes antiparallel states more favorable, J is considered to have a positive value. The one-bond coupling constant, 1J, is usually positive with a large magnitude. While the coupling magnitude is evident from the fine structure in NMR spectra, the sign of the coupling constant cannot be.

Spin information is transmitted more effectively with increasing s character of the involved orbitals. This explains the increasing 1JC–H values for ethane, ethene, and ethyne (125, 156, and 249 Hz). Similarly, the increase in the s character of exocyclic bonds in strained cyclic systems is responsible for the large C–H coupling constants. As a result, cyclohexane which is not a strained system, has a 1JC–H of 125 Hz, similar to ethane, while cyclopentane, cyclobutane, and cyclopropane have 1JC–H values of 129, 134, and 160 Hz, respectively.

1JC–H values also increase when the coupled carbon has an electronegative substituent as seen in the chlorinated methanes (125, 150, 178, and 209 Hz, respectively, for CH4, CH3Cl, CH2Cl2, and CHCl3). Despite the strength of one-bond coupling, carbon–hydrogen coupling is rarely observed in proton NMR spectra because of the low abundance of carbon-13.

Теги
Spin CouplingOne bond CouplingNMR active NucleiCoupling ConstantJ ValueAntiparallel SpinsS Character1J C H ValuesEthaneEtheneEthyneCyclohexaneElectronegative SubstituentsCarbon 13 Abundance

Из главы 8:

article

Now Playing

8.14 : Spin–Spin Coupling: One-Bond Coupling

Interpreting Nuclear Magnetic Resonance Spectra

893 Просмотры

article

8.1 : Chemical Shift: Internal References and Solvent Effects

Interpreting Nuclear Magnetic Resonance Spectra

528 Просмотры

article

8.2 : NMR Spectroscopy: Chemical Shift Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Просмотры

article

8.3 : Proton (¹H) NMR: Chemical Shift

Interpreting Nuclear Magnetic Resonance Spectra

1.4K Просмотры

article

8.4 : Inductive Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.0K Просмотры

article

8.5 : π Electron Effects on Chemical Shift: Overview

Interpreting Nuclear Magnetic Resonance Spectra

994 Просмотры

article

8.6 : π Electron Effects on Chemical Shift: Aromatic and Antiaromatic Compounds

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.7 : ¹H NMR Chemical Shift Equivalence: Homotopic and Heterotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

2.2K Просмотры

article

8.8 : ¹H NMR Chemical Shift Equivalence: Enantiotopic and Diastereotopic Protons

Interpreting Nuclear Magnetic Resonance Spectra

1.3K Просмотры

article

8.9 : ¹H NMR Signal Integration: Overview

Interpreting Nuclear Magnetic Resonance Spectra

1.2K Просмотры

article

8.10 : NMR Spectroscopy: Spin–Spin Coupling

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.11 : ¹H NMR Signal Multiplicity: Splitting Patterns

Interpreting Nuclear Magnetic Resonance Spectra

4.8K Просмотры

article

8.12 : Interpreting ¹H NMR Signal Splitting: The (n + 1) Rule

Interpreting Nuclear Magnetic Resonance Spectra

1.1K Просмотры

article

8.13 : Spin–Spin Coupling Constant: Overview

Interpreting Nuclear Magnetic Resonance Spectra

828 Просмотры

article

8.15 : Spin–Spin Coupling: Two-Bond Coupling (Geminal Coupling)

Interpreting Nuclear Magnetic Resonance Spectra

884 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены