Войдите в систему

Organisms are capable of detecting and fixing nucleotide mismatches that occur during DNA replication. This sophisticated process requires identifying the new strand and replacing the erroneous bases with correct nucleotides. Mismatch repair is coordinated by many proteins in both prokaryotes and eukaryotes.

The Mutator Protein Family Plays a Key Role in DNA Mismatch Repair

The human genome has more than 3 billion base pairs of DNA per cell. Prior to cell division, that vast amount of genetic information needs to be replicated. Despite the proofreading ability of the DNA polymerase, a copying error occurs approximately every 1 million base pairs. One type of error is the mismatch of nucleotides, for example, the pairing of A with G or T with C. Such mismatches are detected and repaired by the Mutator protein family. These proteins were first described in the bacteria Escherichia coli (E. coli), but homologs appear throughout prokaryotes and eukaryotes.

Mutator S (MutS) initiates the mismatch repair (MMR) by identifying and binding to the mismatch. Subsequently, MutL identifies which strand is the new copy. Only the new strand requires fixing, while the template strand needs to remain intact. How can the molecular machinery identify the newly synthesized strand of DNA?

Newly Synthesized Strands of DNA Differ from Their Template Strand

In many organisms, cytosine and adenine bases of the new strand receive a methyl group sometime after replication. Therefore, Mut proteins identify new strands by recognizing sequences that have not yet been methylated. Additionally, the newly synthesized strand in eukaryotes is more likely to have small breaks, also called DNA nicks. The MMR proteins can thus identify the nicked strand and target it for repair.

After identification of the new strand, nuclease enzymes cut the affected region and excise the incorrect nucleotides. Next, DNA polymerase fills in the correct nucleotides, and DNA ligase seals the sugar-phosphate backbone of the DNA, thereby completing the mismatch repair process.

Defects in the Mismatch Repair Mechanism Can Cause Cancer

The human homolog of MutS is called Mutator S homolog 2 (MSH2). If MSH2 function is compromised, point mutations and frameshift mutations throughout the genome are not properly repaired. Consequently, humans carrying a single copy of such a compromised MSH2 have a higher likelihood of developing cancer.

Unrepaired Mutations Fuel Adaptation

Would it be best if MMR never missed a mismatch? Even low mutation rates can cause a problem for an organism. However, mutations also contribute to genetic variation in a population. For instance, a permissive mismatch repair system in a bacterium can lead to the mutation of a gene that confers antibiotic resistance, thereby increasing the chances of bacterial survival and reproduction when exposed to antibiotics. This is great news for the bacterial population but bad news for humans that rely on antibiotics to combat infectious diseases.

Теги
Mismatch RepairNucleotide MismatchesDNA ReplicationMutator Protein FamilyMutSMutLEukaryotesProkaryotesDNA NicksMSH2Cancer RiskGenome MutationsExcision RepairDNA PolymeraseDNA Ligase

Из главы 8:

article

Now Playing

8.12 : Mismatch Repair

DNA Replication and Repair

4.6K Просмотры

article

8.1 : Спаривание оснований и репарация ДНК

DNA Replication and Repair

64.3K Просмотры

article

8.2 : Вилка репликации ДНК

DNA Replication and Repair

13.2K Просмотры

article

8.3 : Синтез запаздывающих цепей

DNA Replication and Repair

11.6K Просмотры

article

8.4 : Ответ

DNA Replication and Repair

5.9K Просмотры

article

8.5 : Корректура

DNA Replication and Repair

5.8K Просмотры

article

8.6 : Репликация у прокариот

DNA Replication and Repair

22.5K Просмотры

article

8.7 : Репликация у эукариот

DNA Replication and Repair

11.7K Просмотры

article

8.8 : Теломеры и теломеразы

DNA Replication and Repair

4.8K Просмотры

article

8.9 : Обзор репарации ДНК

DNA Replication and Repair

7.3K Просмотры

article

8.10 : Ремонт основания

DNA Replication and Repair

3.5K Просмотры

article

8.11 : Эксцизионная репарация нуклеотидов

DNA Replication and Repair

3.3K Просмотры

article

8.13 : Фиксация двухцепочечных разрывов

DNA Replication and Repair

3.0K Просмотры

article

8.14 : Гомологичная рекомбинация

DNA Replication and Repair

4.3K Просмотры

article

8.15 : Конверсия генов

DNA Replication and Repair

2.2K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены