Войдите в систему

The correlation coefficient, r, developed by Karl Pearson in the early 1900s, is numerical and provides a measure of strength and direction of the linear association between the independent variable x and the dependent variable y.

If you suspect a linear relationship between x and y, then r can measure how strong the linear relationship is.

What the VALUE of r tells us:

The value of r is always between –1 and +1: –1 ≤ r ≤ 1.

The size of the correlation r indicates the strength of the linear relationship between x and y. Values of r close to –1 or to +1 indicate a stronger linear relationship between x and y.

If r = 0, there is likely no linear correlation. It is important to view the scatterplot because data that exhibit a curved or horizontal pattern may have a correlation of 0.

If r = 1, there is a perfect positive correlation. If r = –1, there is a perfect negative correlation. In both these cases, all of the original data points lie in a straight line. Of course, in the real world, this will not generally happen.

What the SIGN of r tells us

A positive value of r means that when x increases, y tends to increase, and when x decreases, y tends to decrease (positive correlation).

A negative value of r means that when x increases, y tends to decrease, and when x decreases, y tends to increase (negative correlation).

The sign of r is the same as the sign of the slope, b, of the best-fit line.

This text is adapted from Openstax, Introductory Statistics, Section 12.3, The Regression Equation

Теги
Correlation CoefficientRKarl PearsonLinear AssociationIndependent VariableDependent VariableStrength Of CorrelationPositive CorrelationNegative CorrelationScatterplotBest fit LineLinear Relationship

Из главы 11:

article

Now Playing

11.2 : Coefficient of Correlation

Correlation and Regression

5.7K Просмотры

article

11.1 : Корреляция

Correlation and Regression

10.8K Просмотры

article

11.3 : Вычисление и интерпретация коэффициента линейной корреляции

Correlation and Regression

5.3K Просмотры

article

11.4 : Регрессионный анализ

Correlation and Regression

5.3K Просмотры

article

11.5 : Выбросы и влиятельные моменты

Correlation and Regression

3.8K Просмотры

article

11.6 : Свойство остатков и наименьших квадратов

Correlation and Regression

6.6K Просмотры

article

11.7 : Остаточные участки

Correlation and Regression

3.9K Просмотры

article

11.8 : Вариация

Correlation and Regression

6.0K Просмотры

article

11.9 : Интервалы прогнозирования

Correlation and Regression

2.1K Просмотры

article

11.10 : Множественная регрессия

Correlation and Regression

2.8K Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены