Mohr's circle is a graphical method for determining an area's principal moments by plotting the moments and product of inertia on a rectangular coordinate system. This circle can also be used to calculate the orientation of the principal axes.

Consider a rectangular beam. The moments of inertia of the beam about the x and y axis are 2.5(107) mm4 and 7.5(107) mm4, respectively. The product of inertia is 1.5(107) mm4. Determine the principal moments of inertia and the orientation of the major and minor principal axes.

The moments and products of inertia are plotted on a rectangular coordinate system.

Equation 1

The center of the circle from the origin, calculated by taking the average of the moments of inertia values about the x and y axis, is 5.0(107) mm4. The radius of the circle can be estimated using trigonometry and is given by the expression,

Equation 1

Substituting the value of the moments and products of inertia into the above expression yields the radius as 2.9(107) mm4. A Mohr's circle with the obtained center and radius is drawn. The points of intersection between the circle and the moment of inertia axis give the principal moments of inertia. The sum of the circle's radius and the average moments of inertia gives the maximum moment of inertia. This value is calculated to be 7.9(107) mm4. Similarly, subtracting the circle's radius from the average moments of inertia gives the minimum moment of inertia. This value is calculated to be 2.1(107) mm4.

The line joining the center of Mohr's circle to a reference point on the circumference makes an angle with the horizontal axis that can be obtained using the trigonometric formula. The angle, obtained using trigonometry, is 31.1 degrees. So, the angle between the major principal axis and horizontal axes is 15.6 degrees. The principal axis corresponding to the maximum value of the moment of inertia is obtained by rotating the x-axis 15.6 degrees counterclockwise. Similarly, the principal axis corresponding to the minimum value of the moment of inertia can be obtained by rotating the y-axis through the same angle.

Теги
Mohr s CirclePrincipal Moments Of InertiaProduct Of InertiaRectangular BeamMoments Of InertiaGraphical MethodMajor Principal AxisMinor Principal AxisTrigonometryMaximum Moment Of InertiaMinimum Moment Of InertiaAngle CalculationCoordinate System

Из главы 10:

article

Now Playing

10.10 : Mohr's Circle for Moments of Inertia: Problem Solving

Moment of Inertia

1.6K Просмотры

article

10.1 : Моменты инерции для областей

Moment of Inertia

759 Просмотры

article

10.2 : Теорема о параллельной оси для площади

Moment of Inertia

1.1K Просмотры

article

10.3 : Радиус вращения области

Moment of Inertia

1.0K Просмотры

article

10.4 : Основные моменты площади

Moment of Inertia

855 Просмотры

article

10.5 : Моменты инерции: решение проблем

Moment of Inertia

494 Просмотры

article

10.6 : Моменты инерции для составных областей

Moment of Inertia

896 Просмотры

article

10.7 : Произведение инерции для площади

Moment of Inertia

383 Просмотры

article

10.8 : Моменты инерции для области вокруг наклонных осей

Moment of Inertia

538 Просмотры

article

10.9 : Круг Мора для моментов инерции

Moment of Inertia

391 Просмотры

article

10.11 : Массовый момент инерции

Moment of Inertia

584 Просмотры

article

10.12 : Массовый момент инерции: решение задачи

Moment of Inertia

239 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены