Potential energy or potential function plays an essential role in determining the stability of a mechanical system. If a system is subjected to both gravitational and elastic forces, the potential function of the system can be expressed as the algebraic sum of gravitational and elastic potential energy. If the system is in equilibrium and is displaced by a small amount, then the work done on the system equals the negative of the change in the system's potential energy from the initial to the final position. If the system undergoes a virtual displacement rather than an actual displacement, then the virtual work relation suggests that the change in potential energy of the system should be zero for all virtual displacements. This means that the equilibrium configuration of a mechanical system is one for which the total potential energy of the system has a stationary value. For a system of one degree of freedom where the potential energy and its derivatives are a continuous function of a single variable x, which describes the configuration, the equilibrium condition can be written as

Equation 1

The above equation states that a mechanical system is in equilibrium when the derivative of its total potential energy is zero. For systems with several degrees of freedom, the partial derivative of potential energy with respect to each coordinate must be zero for equilibrium.

The stability at the equilibrium configuration remains as long as its potential energy is minimum at that configuration. To ensure minimum potential energy, the second derivative of the potential function with respect to the displacement coordinates must be positive. This is the second essential condition for the stable equilibrium of a system.

Теги
Potential EnergyMechanical SystemEquilibriumGravitational ForcesElastic ForcesVirtual Work RelationStationary ValueDegree Of FreedomDerivativesStabilityMinimum Potential EnergySecond DerivativeDisplacement Coordinates

Из главы 11:

article

Now Playing

11.9 : Potential-Energy Criterion for Equilibrium

Virtual Work

477 Просмотры

article

11.1 : Работа

Virtual Work

360 Просмотры

article

11.2 : Мгновенная работа пары

Virtual Work

615 Просмотры

article

11.3 : Виртуальная работа

Virtual Work

666 Просмотры

article

11.4 : Виртуальная работа для системы соединенных твердых тел

Virtual Work

312 Просмотры

article

11.5 : Принцип виртуальной работы: решение проблем

Virtual Work

940 Просмотры

article

11.6 : Механическая эффективность реальных машин

Virtual Work

509 Просмотры

article

11.7 : Консервативные силы

Virtual Work

207 Просмотры

article

11.8 : Потенциальная энергия

Virtual Work

609 Просмотры

article

11.10 : Устойчивость равновесной конфигурации

Virtual Work

359 Просмотры

article

11.11 : Система с одной степенью свободы

Virtual Work

376 Просмотры

article

11.12 : Устойчивость равновесной конфигурации: решение проблемы

Virtual Work

519 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены