Войдите в систему

Polydentate ligands are most widely used in complexometric titrations because they form more stable complexes with the metal ions than mono- or bidentate ligands due to the chelate effect. Examples of polydentate ligands are ethylenediaminetetraacetic acid (EDTA), crown ethers, and cryptands. The most important feature of optimal polydentate ligands is the ability to form 1:1 complexes in a single-step process. Amino carboxylic acid derivatives are frequently used as complexing agents. EDTA is among the most versatile ligands, and it is widely used as a chelating agent in analytical chemistry because most elements can be measured with EDTA through different titration methods.

EDTA is a hexadentate ligand consisting of six complexing groups: four carboxylate oxygens and two amine nitrogens. They coordinate with the metal ion by sharing the lone pairs with the metal. EDTA forms stable cage-like structures with most metal ions and is usually represented with octahedral geometry. However, the geometry of the different complexes depends on the size of the metal ions.

EDTA is a neutral tetraprotic acid, represented by the abbreviation H4Y. (The disodium salt of EDTA is the preferred laboratory reagent due to its higher solubility than the parent acid.) EDTA dissociates into various species, and their relative amounts depend on the pH of the solution. At low pH, the amine nitrogens are protonated, making EDTA a hexaprotic system (H6Y2+). The fully deprotonated form (Y4−) exists at high pH and can generate hexadentate complexes with metal ions. This is considered the 'active' form of EDTA.

Теги
EDTAPolydentate LigandsComplexometric TitrationsChelate EffectMetal IonsAmino Carboxylic AcidHexadentate LigandChelating AgentAnalytical ChemistryOctahedral GeometryTetraprotic AcidDisodium SaltProtonationDeprotonated FormHexadentate Complexes

Из главы 5:

article

Now Playing

5.4 : EDTA: Chemistry and Properties

Complexometric Titration, Precipitation Titration, and Gravimetry

1.5K Просмотры

article

5.1 : Complexometric Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

4.1K Просмотры

article

5.2 : Complexometric Titration: Ligands

Complexometric Titration, Precipitation Titration, and Gravimetry

767 Просмотры

article

5.3 : Properties of Organometallic Compounds

Complexometric Titration, Precipitation Titration, and Gravimetry

793 Просмотры

article

5.5 : EDTA: Conditional Formation Constant

Complexometric Titration, Precipitation Titration, and Gravimetry

596 Просмотры

article

5.6 : EDTA: Auxiliary Complexing Reagents

Complexometric Titration, Precipitation Titration, and Gravimetry

475 Просмотры

article

5.7 : EDTA: Direct, Back-, and Displacement Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

1.9K Просмотры

article

5.8 : EDTA: Indirect and Alkalimetric Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

607 Просмотры

article

5.9 : Complexometric EDTA Titration Curves

Complexometric Titration, Precipitation Titration, and Gravimetry

677 Просмотры

article

5.10 : Effects of EDTA on End-Point Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

205 Просмотры

article

5.11 : Masking and Demasking Agents

Complexometric Titration, Precipitation Titration, and Gravimetry

2.1K Просмотры

article

5.12 : Precipitation Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

3.8K Просмотры

article

5.13 : Precipitation Titration Curve: Analysis

Complexometric Titration, Precipitation Titration, and Gravimetry

867 Просмотры

article

5.14 : Precipitation Titration: Endpoint Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

1.3K Просмотры

article

5.15 : Gravimetry: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

3.3K Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены