Impact loading occurs when a moving object collides with a stationary structure, such as a rod with a uniform cross-sectional area fixed at one end. Under these conditions, the rod absorbs the kinetic energy from the striking object, leading to deformation and subsequent stress development. As the rod returns to its original position and reaches maximum stress, the absorbed energy, initially manifested as kinetic energy, transforms entirely into strain energy.

In cases of elastic deformation, where the material returns to its initial shape without permanent damage, the strain energy accumulated at the point of maximum deformation is equivalent to the kinetic energy of the moving object. This equivalence assumes that no energy is lost to heat or rebound, an idealization not typically found in practical environments. From this relationship, the maximum stress experienced by the rod based on the velocity and mass of the striking object and the rod's modulus of elasticity can be derived.

Equation 1

The assumptions made in this analysis lead to a conservative approach to engineering design, ensuring that structures can withstand unexpected forces. This approach often results in over-engineering, incorporating safety factors to account for energy losses and other dynamics not covered by the theoretical model.

Теги
Impact LoadingKinetic EnergyStationary StructureElastic DeformationStrain EnergyMaximum StressModulus Of ElasticityEngineering DesignSafety FactorsEnergy Losses

Из главы 27:

article

Now Playing

27.5 : Impact Loading

Energy Methods

137 Просмотры

article

27.1 : Энергия деформации

Energy Methods

244 Просмотры

article

27.2 : Плотность энергии деформации

Energy Methods

257 Просмотры

article

27.3 : Энергия упругой деформации при нормальных напряжениях

Energy Methods

99 Просмотры

article

27.4 : Энергия упругой деформации для напряжений сдвига

Energy Methods

94 Просмотры

article

27.6 : Ударная нагрузка на консольную балку

Energy Methods

278 Просмотры

article

27.7 : Теорема Кастильяно

Energy Methods

273 Просмотры

article

27.8 : Теорема Кастильяно: решение проблем

Energy Methods

385 Просмотры

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены