Войдите в систему

Renal clearance, a crucial parameter in pharmacokinetics, can be determined using two different methods: the graphical method and the midpoint method. These methods provide insights into the rate of drug excretion by the kidneys and aid in assessing renal function.

The graphical method involves plotting the rate of drug excretion in urine against the plasma drug concentration. By analyzing the graph, the clearance can be calculated and obtained. Drugs rapidly excreted by the kidneys exhibit a larger excretion rate and a steeper slope on the graph, corresponding to a greater renal clearance. Conversely, slowly excreted drugs display a smaller slope, indicating a lower renal clearance.

The clearance equation can be rearranged and integrated to obtain the cumulative amount of drug excreted in the urine. The renal clearance can be determined by plotting this graph and analyzing its slope. However, one disadvantage of the graphical method is that if a data point is missing or incomplete, it is difficult to accurately calculate the cumulative drug amount excreted in urine.

Alternatively, the midpoint method can be used to calculate renal clearance. This method uses the plasma drug concentration at the midpoint of the collection interval. Although the midpoint method is less robust than the graphical method, it is clinically used when only a limited number of plasma drug concentrations can be collected and measured. This allows for estimating renal clearance based on the available data points.

Both methods play a significant role in assessing renal clearance and evaluating renal function. The graphical method provides a more detailed analysis, while the midpoint method offers a practical alternative when limited data is available for analysis.

It is worth noting that these methods are just two of several approaches used to determine renal clearance. Healthcare professionals rely on these techniques to make informed decisions regarding drug dosing and ensuring safe and effective therapy, particularly in patients with renal impairment.

Из главы 6:

article

Now Playing

6.22 : Determination of Renal Drug Clearance: Graphical and Midpoint Methods

Pharmacokinetics: Drug Excretion and Clearance

40 Просмотры

article

6.1 : Drug Elimination: Overview

Pharmacokinetics: Drug Excretion and Clearance

515 Просмотры

article

6.2 : Elimination Kinetics: First-Order and Zero-Order

Pharmacokinetics: Drug Excretion and Clearance

178 Просмотры

article

6.3 : Renal Drug Excretion: Overview

Pharmacokinetics: Drug Excretion and Clearance

57 Просмотры

article

6.4 : Renal Drug Excretion: Glomerular Filtration

Pharmacokinetics: Drug Excretion and Clearance

67 Просмотры

article

6.5 : Renal Drug Excretion: Tubular Reabsorption

Pharmacokinetics: Drug Excretion and Clearance

48 Просмотры

article

6.6 : Renal Drug Excretion: Tubular Secretion

Pharmacokinetics: Drug Excretion and Clearance

62 Просмотры

article

6.7 : Renal Drug Excretion: Effect of Urine pH, Flow Rate, and Drug pKa

Pharmacokinetics: Drug Excretion and Clearance

77 Просмотры

article

6.8 : Hepatic Drug Excretion: Enterohepatic Cycling

Pharmacokinetics: Drug Excretion and Clearance

481 Просмотры

article

6.9 : Hepatic Drug Excretion: Influencing Factors

Pharmacokinetics: Drug Excretion and Clearance

44 Просмотры

article

6.10 : Drug Excretion: Pulmonary and Glandular Routes

Pharmacokinetics: Drug Excretion and Clearance

28 Просмотры

article

6.11 : Drug Excretion: Miscellaneous Routes

Pharmacokinetics: Drug Excretion and Clearance

16 Просмотры

article

6.12 : Drug Clearance: Overview

Pharmacokinetics: Drug Excretion and Clearance

29 Просмотры

article

6.13 : Clearance Models: Physiological Models

Pharmacokinetics: Drug Excretion and Clearance

36 Просмотры

article

6.14 : Clearance Models: Compartment Models

Pharmacokinetics: Drug Excretion and Clearance

32 Просмотры

See More

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены