Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Основные этапы живой анионной полимеризации фенилглицидиловый эфира (PheGE) на метокси-полиэтиленгликоль (MPEG- б) -PPheGE описаны. Результирующие блок-сополимера мицеллы (BCMS) загружались с доксорубицином 14% (мас%) и замедленное высвобождение лекарственного средства в течение 4-х дней при физиологически получали соответствующие условия.
В этом исследовании, амфифильный сополимер , который включает в себя базовую образующий блок с фенильными группами, синтезировали живой анионной полимеризации фенилглицидиловый эфир (PheGE) на метокси-полиэтиленгликоль (MPEG- б -PPheGE). Определение характеристик сополимера показал узкое молекулярно -массовое распределение (PDI <1,03) и подтвердили степень полимеризации мПЭГ 122 - B - (PheGE) 15. Критическая концентрация мицелл сополимера оценивали с использованием установленного способа флуоресценции с поведением агрегации оценивали с помощью динамического рассеяния света и передачи электронной микроскопии. Потенциал сополимера для использования в приложениях для доставки лекарственных средств оценивали в предварительном порядке , включая в пробирке биосовместимость, загрузка и высвобождения гидрофобного противоракового препарата доксорубицина (DOX). Стабильная рецептура мицелл DOX был подготовлен с уровнем загрузки лекарственного средства до 14% (мас%), погрузка наркотиков efficiencies> 60% (вес / вес) и замедленное высвобождение препарата в течение 4-х дней при физиологически соответствующих условиях (кислых и нейтральных рН, присутствие альбумина). Уровень загрузки высокого наркотиков и замедленным высвобождением приписывается стабилизирующих π-pi; взаимодействия между DOX и центральным блоком формирования мицелл.
В водной среде, амфифильные блок-сополимеры, собираются, чтобы сформировать нано-размера блок-сополимера мицелл (BCMS), которые состоят из гидрофобной сердцевины, окруженной оболочкой гидрофильных или короны. Ядро мицеллы может служить в качестве резервуара для включения гидрофобных лекарственных средств; в то время как гидрофильный коронный обеспечивает интерфейс между ядром и внешней средой. Поли (этиленгликоль) (ПЭГ) и его производные являются одним из наиболее важных классов полимеров , и один из наиболее широко используемых в лекарственной композиции. 1-3 BCMS оказались достойной платформой для доставки лекарственных средств с несколько составов , опираясь на этот технологии в настоящее время в поздней стадии клинической разработки. 4 Чаще всего, гидрофобный блок - сополимера состоит из поликапролактон, поли (D, L-лактида), поли (пропиленоксид) или поли (β-бензил-L-аспартат). 5 -9
Группа Катаока исследовала сферические мицеллы , образованные из ПЭО б -PBLA И поли (окись этилена) - б . - (Доксорубицин полиаспарагиновой кислоты с сопряженными) для доставки доксорубицина (DOX) 10,11 В своих докладах они выдвинули , что π-pi ; взаимодействие между препаратом полимерконъюгированных или PBLA и свободный DOX действовать, чтобы стабилизировать ядро мицеллы, что приводит к увеличению нагрузки и удержания лекарственного средства. Установлено , что совместимость или взаимодействие между лекарственным средством и блок основного формирования являются определяющими ключевых параметров , связанных с производительностью. 12 В дополнение к DOX, ряд терапии рака включают ароматические кольца в пределах своей основной структуры (например, метотрексат, olaparib, С.Н. -38).
В результате существует значительный интерес к синтезу сополимеров, которые включают бензиловый кольца в их основных образующих блоков. Анионные полимеризация с раскрытием кольца ПЭГ и его производных позволяют контролировать молекулярной массой и привести к материалам с низкой полидисперсностью с хорошим выходом. 13,14 EthyleОксид пе с фенилглицидиловый эфиром (PheGE) или оксид стирола (SO) может быть (со) полимеризуется с образованием блок - сополимеров , которые образуют мицеллы для солюбилизации гидрофобных лекарственных средств. 15-18 В настоящем докладе описываются необходимые шаги для живой анионной полимеризации фенил глицидилэфир мономера на Mpeg-ОН , как макроинициатора (Рисунок 1). Полученный блок-сополимер и его агрегаты затем охарактеризованы с точки зрения свойств релевантности для использования в доставке лекарств.
Access restricted. Please log in or start a trial to view this content.
Рисунок 1. Схема , показывающая девять ключевых шагов в подготовке б -PPheGE сополимера MPEG-. Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
1. Приготовление реагентов в сухих условиях
2. Подготовка калия нафталина
3. Материалы и необходимые меры для эффективного живой анионной полимеризации
Рисунок 2. Сборка и основные этапы перегонки / передачи. Пожалуйста , нажмите здесь , чтобы посмотреть увеличенную версию этой фигуры.
4. Описание ключевых шагов живой анионной полимеризации: дистилляция и передачи
5. Определение характеристик Сополимеры
6. Процедура Загрузка доксорубицин в BCMS
7. Оценка доксорубицина Загрузка в DOX-BCMS
8. Оценкаэкстракорпорального Выпуск DOX от DOX-BCMS
Access restricted. Please log in or start a trial to view this content.
Рисунок 3. Иллюстрация анионной полимеризации фенилглицидиловый эфира на мПЭГ макроинициатора для получения видеоданных MPEG - B - (PheGE) 15 для получения блок - сополимеров мице...
Access restricted. Please log in or start a trial to view this content.
В связи с хорошим контролем, что анионной полимеризации обеспечивает более молекулярным весом является одним из наиболее прикладных процессов в промышленности для получения полимеров на основе оксиэтиленовых мономеров (ПЭГ и ППГ). Оптимальные и жесткие условия должны быть использов?...
Access restricted. Please log in or start a trial to view this content.
The authors have nothing to disclose.
CA acknowledges a Discovery grant from the Natural Sciences and Engineering Research Council of Canada. CA acknowledges a Chair in Pharmaceutics and Drug Delivery from GSK. The authors declare no competing financial interest.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
DMEM/HAMF12 | Gibco, Life Technologies | 12500 | Supplemented with 10% FBS. Warm in 37 °C water bath. |
Trypsin-EDTA (0.25%) | Sigma-Aldrich | T4049 | Warm in 37 °C water bath |
Fetal bovine serum (FBS) | Sigma-Aldrich | F1051 | Canada origin |
MDA-MB-468 cell line | ATCC | HTB-132 | |
MTS tetrazolium reagent | PROMEGA | G111B | |
Phenazine ethosulfate (PES) | Sigma-Aldrich | P4544 | >95% |
mPEG5K (Mn 5,400 g/mol) | Sigma-Aldrich | 81323 | PDI=1.02 |
Dimethylsolfoxide (DMSO) | Sigma-Aldrich | D4540 | >99.5% |
Naphthalene | Sigma-Aldrich | 147141 | >99% |
Phenyl glycidyl ether | Sigma-Aldrich | A32608 | >85% |
Benzophenone | Sigma-Aldrich | 427551 | >99% |
Potassium | Sigma-Aldrich | 451096 | >98% |
Tetrahydrofuran | Caledon Laboratory Chemicals | 8900 1 | ACS |
Hexane | Caledon Laboratory Chemicals | 5500 1 | ACS |
Calcium hydride (CaH2) | ACP | C-0460 | >99.5% |
Diethyl Ether | Caledon Laboratory Chemicals | 1/10/4800 | ACS |
Microplate reader | BioTek Instruments | ||
Differential scanning calorimetry (DSC) | TA Instruments Inc | DSC Q100 | |
Gel permeation chromatography (GPC) | Waters | 2695 separation moldule / 2414 detector | 2 Columns: Agilent Plgel 5 µm Mixed-D |
NMR spectroscopy | Varian Mercury 400MHz | ||
Chloroform-d | Sigma-Aldrich | 151858 | 99.96% |
DMSO-d | Sigma-Aldrich | 156914 | 99.96% |
Vaccum pump | Gardner Denver Welch Vacuum Tech, Inc. | Ultimate pressure 1x10-4 torr | |
Drierit with indicator, 8 mesh | Sigma-Aldrich | 238988 | Regenerated at 230 °C for 2 hr |
Access restricted. Please log in or start a trial to view this content.
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены