Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.
Method Article
Представлен метод нецелевого анализа метаболитов и липидов зерна пшеницы. Протокол включает в себя метод извлечения метаболита ацетонитрила и обратную фазовую методологию жидкой хроматографии-масс-спектрометрии, с приобретением в положительных и отрицательных режимах ионизации электроспрея.
Понимание взаимосвязей между генами, окружающей средой и управлением в сельскохозяйственной практике может позволить более точнопрогнозировать и управить урожайность и качество продукции. Метаболомика данные обеспечивает чтение из этих взаимодействий в данный момент времени и информативным биохимического статуса организма. Кроме того, отдельные метаболиты или панели метаболитов могут быть использованы в качестве точных биомаркеров для прогнозирования и управления качеством. По прогнозам, метаболомрастение будет содержать тысячи мелких молекул с разнообразными физикохимическими свойствами, которые дают возможность биохимическому пониманию физиологических признаков и открытию биомаркеров. Чтобы использовать это, ключевой целью исследователей метаболомики является захват как можно больше физико-химического разнообразия в рамках одного анализа. Здесь мы представляем метод нецелевой метаболомики жидкой хроматографии-масс-спектрометрии для анализа пшеничного зерна, выращенного на местах. Метод использует менеджер растворителя каломатографа жидкостного хроматографа для введения третьей мобильной фазы и сочетает в себе традиционный градиент обратной фазы с липидно-податливым градиентом. Подробно описаны подготовка зерна, извлечение метаболита, инструментальный анализ и обработка данных. Наблюдалась хорошая точность массы и воспроизводимость сигнала, и метод дал около 500 биологически значимых функций в режиме ионизации. Кроме того, были определены значительно разные метаболитные и липидные сигналы между сортами пшеницы.
Понимание взаимосвязей между генами, окружающей средой и практикой управления в сельском хозяйстве может позволить более точнопрогнозировать и управиться выходом и качеством продукции. Метаболиты растений зависят от таких факторов, как геном, окружающая среда (климат, осадки и т.д.), а в сельском хозяйстве управляется тем, как управляются сельскохозяйственные культуры (т.е. применение удобрений, фунгицидов и т.д.). В отличие от генома, метаболом находится под влиянием всех этих факторов и, следовательно, метаболомика данные обеспечивает биохимический отпечаток этих взаимодействий в определенное время. Есть, как правило, одна из двух целей для метаболомики на основе исследования: во-первых, для достижения более глубокого понимания биохимии организма и помочь объяснить механизм реагирования на возмущение (абиотических или биотических стресс) в отношении физиологии; и, во-вторых, связать биомаркеры с исследуемыми возмущениями. В обоих случаях результатом наличия этих знаний является более точная стратегия управления для достижения цели повышения размера и качества урожайности.
По прогнозам, метаболомрастение будет содержать тысячи1 малых молекул с разнообразными физикохимическими свойствами. В настоящее время никакие платформы метаболомики (преимущественно масс-спектрометрия и ядерная магнитно-резонансная спектроскопия) не могут зафиксировать весь метаболом в одном анализе. Разработка таких методов (подготовка образцов, метаболитная добыча и анализ), которые обеспечивают максимально большое покрытие метаболом, насколько это возможно в рамках одного аналитического запуска, является ключевой целью для исследователей метаболомики. Предыдущие нецелевые метаболомические анализы зерна пшеницы объединили данные из нескольких хроматографических разделений и закупочных полярностей и/или приборов для большего охвата метаболомами. Однако для этого необходимо подготовить и приобрести образцы отдельно для каждого метода. Например, Beleggia et al.2 подготовили производный образец для анализа полярных анализов GC-MS в дополнение к анализу GC-MS неполярных анализов неполярных анализов. Das et al.3 использовали как методы GC-, так и LC-MS для улучшения охвата в своих анализах; однако этот подход, как правило, требует отдельной выборочной подготовки, как описано выше, а также двух независимых аналитических платформ. Предыдущие анализы зерна пшеницы с использованием GC-MS2,,3,,4 и LC-MS3,,5 платформ дали от 50 до 412 (55 идентифицированных) особенностей для GC-MS, 409 для комбинированных GC-MS и LC-MS и несколько тысяч для анализа липидоми LC-MS5. Объединив по крайней мере два режима в единый анализ, расширенный охват метаболом может быть сохранен, увеличивая богатство биологического толкования, а также предлагая экономию как во времени, так и в стоимости.
Для обеспечения эффективного разделения широкого спектра липидных видов путем обратной фазы хроматографии, современные методологии липидоми обычно используют высокую долю изопропанола в растворителе elution6, обеспечивая удобство для липидных классов, которые в противном случае могли бы быть нерешенными хроматографии. Для эффективного разделения липидов, начиная передвижная фаза также гораздо выше в органическом составе7 чем типичные обратные методы хроматографических фаз, которые рассматривают другие типы молекул. Высокий органический состав в начале градиента делает эти методы менее подходящими для многих других классов молекул. В частности, обратная фаза жидкой хроматографии использует бинарный градиент растворителя, начиная с в основном водного состава и увеличивая органическое содержание по мере увеличения силы растворения хроматографии. С этой целью мы стремились объединить два подхода для достижения разделения как липидных, так и нелипидных классов метаболитов в рамках одного анализа.
Здесь мы представляем хроматографический метод, который использует третью мобильную фазу и позволяет комбинированную традиционную обратную фазу и соответствующий липидомике метод хроматографии с использованием одного образца подготовки и одной аналитической колонки. Мы приняли многие из мер по контролю качества и шагов фильтрации данных, которые ранее были реализованы в преимущественно клинических метаболомических исследованиях. Эти подходы полезны для определения надежных объектов с высокой технической воспроизводимостью и биологической репродукцией и исключают те, которые не отвечают этим критериям. Например, мы описываем повторный анализ объединенной выборки8, коррекции КК9, фильтрации данных9,,10 и вычисления отсутствующих функций11.
Этот метод подходит для 30 образцов (примерно 150 семян на образец). Здесь были использованы три биологических репликата десяти различных сортов пшеницы, выращенных на местах.
1. Приготовление зерновых
2. Подготовка растворителя добычи
ПРИМЕЧАНИЕ: Подготовка извлечения растворителя в тот же день, как выполнение извлечений.
3. Добыча метаболита
4. Подготовка решений для анализа LC-MS
ВНИМАНИЕ: Для концентрированной кислоты, всегда добавляйте кислоту в воду / растворитель.
5. Подготовка образцов для анализа LC-MS
6. Установка LC-MS
ПРИМЕЧАНИЕ: Подробное описание установки инструмента и метода приобретения описано в руководстве пользователя производителя. Ниже приводится общее руководство и подробные сведения, конкретные для этого протокола. Следующие шаги могут быть выполнены в любое время до получения данных.
7. Обработка данных
ПРИМЕЧАНИЕ: Общий рабочий процесс обработки данных представлен на рисунке 1.
Метаболом растений влияет сочетание его генома и окружающей среды, а также в сельскохозяйственных условиях, режим управления сельскохозяйственными культурами. Мы демонстрируем, что генетические различия между сортами пшеницы можно наблюдать на уровне метаболита, з?...
Здесь мы представляем метод нецелевой метаболомики на основе LC-MS для анализа зерна пшеницы. Метод сочетает в себе четыре режима приобретения (обратная фаза и липидно-подливающая обратная фаза с положительной и отрицательной ионизации) в два режима путем введения третьей мобильной фаз?...
Авторам нечего раскрывать.
Авторы хотели бы отметить программу стипендий премьер-министра Западной Австралии по сельскому хозяйству и продовольствию (Департамент рабочих мест, туризма, науки и инноваций, правительство Западной Австралии) и стипендиат премьер-министра, профессор Саймон Кук (Центр Цифровое сельское хозяйство, Университет Кертина и Университет Мердока). Полевые испытания и сбор образцов зерна были поддержаны правительством Программы роялти для регионов Западной Австралии. Мы признаем Грантли Стейнера и Роберта Френша за их вклад в полевые испытания. NCRIS финансируемых Bioplatforms Австралии признан для финансирования оборудования.
Name | Company | Catalog Number | Comments |
13C6-sorbitol | Merck Sigma-Aldrich | 605514 | |
2-aminoanthracene | Merck Sigma-Aldrich | A38800-1 g | |
Acetonitrile | ThermoFisher Scientific | FSBA955-4 | Optima LC-MS grade |
Ammonium formate | Merck Sigma-Aldrich | 516961-100 mL | >99.995% |
Analyst TF | Sciex | Version 1.7 | |
AnalyzerPro software | SpectralWorks Ltd. | Data processing software used for step 7.2. Version 5.7 | |
AnalyzerPro XD sortware | SpectralWorks Ltd. | Data processing software used for step 7.5. Version 1.4 | |
Balance | Sartorius. Precision Balances Pty. Ltd. | ||
d6-transcinnamic acid | Isotec | 513962-250 mg | |
Formic acid | Ajax Finechem Pty. Ltd. | A2471-500 mL | 99% |
Freeze dryer (Freezone 2.5 Plus) | Labconco | 7670031 | |
Glass Schott bottles (100 mL, 500 mL, 1 L) | |||
Glass vials (2 mL) and screw cap lids (pre-slit) | Velocity Scientific Solutions | VSS-913 (vials), VSS-SC91191 (lids) | |
Installation kit for Sciex TripleToF | Sciex | p/n 4456736 | |
Isopropanol | ThermoFisher Scientific | FSBA464-4 | Optima LC-MS grade |
Laboratory blender | Waring commercial | Model HGBTWTS3 | |
Leucine-enkephalin | Waters | p/n 700008842 | Tuning solution |
Metaboanalyst | https://www.metaboanalyst.ca/MetaboAnalyst/faces/home.xhtml | Web-based analytical pipeline for high-throughput metabolomics. Free, web-based tool. Version 4.0. | |
Methanol | ThermoFisher Scientific | FSBA456-4 | Optima LC-MS grade |
Miconazole | Merck Sigma-Aldrich | M3512-1 g | |
Microcentrifuge (Eppendorf 5415R) | Eppendorf (Distributed by Crown Scientific Pty. Ltd.) | 5426 No. 0021716 | |
Microcentrifuge tubes (2 mL) | SSIbio | 1310-S0 | |
Microsoft Office Excel | Microsoft | ||
Peak View software | Sciex | Version 1.2 (64-bit) | |
Pipette tips (200 uL, 100 uL) | ThermoFisher Scientific | MBP2069-05-HR (200 uL), MBP2179-05-HR (1000 uL) | |
Pipettes (200 uL, 1000 uL) | ThermoFisher Scientific | ||
Plastic centrifuge tubes (15 mL) | ThermoFisher Scientific | NUN339650 | |
Progenesis QI | Nonlinear Dynamics | Samll molecule discovery analysis software. Version 2.3 (64-bit) | |
Sciex 5600 triple ToF mass spectrometer | Sciex | ||
Screw-cap lysis tubes (2 mL) with ceramic beads | Bertin Technologies | ||
Sodium formate | Merck Sigma-Aldrich | 456020-25 g | |
Tissue lyser/homogeniser | Bertin Technologies | Serial 0001620 | |
Volumetric flasks (10 mL, 50 mL, 100 mL, 200 mL, 1 L) | |||
Vortex mixer | IKA Works Inc. (Distributed by Crown Scientific Pty. Ltd.) | 001722 | |
Water | ThermoFisher Scientific | FSBW6-4 | Optima LC-MS grade |
Water's Acquity LC system equipped with quaternary pumps | Waters | ||
Water's Aquity UPLC 100mm HSST3 C18 column | Waters | p/n 186005614 |
Запросить разрешение на использование текста или рисунков этого JoVE статьи
Запросить разрешениеThis article has been published
Video Coming Soon
Авторские права © 2025 MyJoVE Corporation. Все права защищены