JoVE Logo

Войдите в систему

Для просмотра этого контента требуется подписка на Jove Войдите в систему или начните бесплатную пробную версию.

В этой статье

  • Резюме
  • Аннотация
  • Введение
  • протокол
  • Результаты
  • Обсуждение
  • Раскрытие информации
  • Благодарности
  • Материалы
  • Ссылки
  • Перепечатки и разрешения

Резюме

В этом исследовании представлен уникальный метод 3D-количественного определения распределения фракции жира в печени (LFF) с использованием магнитно-резонансной томографии Диксона (МРТ Диксона). Карты LFF, полученные на основе синфазных и водно-фазовых изображений, интегрированы с 3D-контурами печени для дифференциации паттернов LFF между нормальной и стеатотической печенью, что позволяет точно оценить содержание жира в печени.

Аннотация

В этом исследовании представлена методология 3D-количественной оценки распределения фракции жира печени (LFF) с использованием анализа изображений МРТ Диксона. Основная цель состоит в том, чтобы предложить высокоточный и неинвазивный способ оценки содержания жира в печени. Этот процесс включает в себя получение синфазных и водных изображений из последовательности Диксона. Затем карты LFF тщательно вычисляются воксел за вокселом путем деления изображений липидной фазы на синфазные изображения. Одновременно с этим из синфазных изображений извлекаются 3D-контуры печени. Эти важнейшие компоненты легко интегрируются для создания комплексной модели распределения 3D-LFF. Этот метод не ограничивается здоровой печенью, но распространяется и на тех, кто страдает стеатозом печени. Полученные результаты демонстрируют замечательную эффективность этого подхода как в визуализации, так и в количественной оценке содержания жира в печени. Он отчетливо различает закономерности, которые дифференцируют нормальную и стеатозную печень. Используя МРТ Диксона для извлечения 3D-структуры печени, этот метод обеспечивает точную оценку LFF, охватывающую весь орган, тем самым открывая большие перспективы для диагностики стеатоза печени с замечательной эффективностью.

Введение

Неалкогольная жировая болезнь печени (НАЖБП) охватывает спектр патологических состояний, начиная от аномального накопления триглицеридов в клетках печени (стеатоз печени) и заканчивая развитием воспаления и повреждения клеток печени, известного как неалкогольный стеатогепатит (НАСГ). В некоторых случаях НАЖБП может прогрессировать до более тяжелых стадий, включая фиброз, цирроз, терминальную стадию заболевания печени или даже гепатоцеллюлярную карциному (ГЦК)1. Опубликованные данные Всемирной организации здравоохранения и Глобального бремени болезней свидетельствуют о том, что примерно 1 235,7 миллиона человек во всем мире страдают от НАЖБП во всехвозрастных группах2. В настоящее время НАЖБП считается одной из наиболее распространенных причин заболеваний, связанных с печенью, во всем мире и, как ожидается, станет ведущей причиной терминальной стадии заболеваний печени в ближайшие десятилетия3.

Точная оценка степени стеатоза печени имеет существенное значение для постановки точного диагноза, правильного выбора лечения и эффективного мониторинга прогрессирования заболевания. Золотым стандартом оценки содержания жира в печени по-прежнему остается биопсия печени. Однако из-за инвазивного характера, возможности возникновения боли, кровотечения и других послеоперационных осложнений он не является практичным вариантом для частых контрольных обследований 4,5,6. Следовательно, существует насущная потребность в неинвазивных методах визуализации, которые могут надежно количественно оценить отложение жира в печени. Магнитно-резонансная томография (МРТ) является многообещающей в этой области благодаря отсутствию ионизирующего излучения и способности чувствительно обнаруживать содержание жира с помощью эффектов химического сдвига 7,8.

В недавних исследованиях были описаны методы МРТ для количественного определения жира в печени, основанные на методах градиентного эха химического сдвига, таких как визуализация Диксона 9,10. Тем не менее, большинство этих методов основаны на анализе двумерных областей интереса. Комплексная оценка трехмерного распределения фракции жира в печени (LFF) остается ограниченной. В настоящем исследовании представлен уникальный 3D подход к количественной оценке LFF, сочетающий МРТ по Диксону с структурной визуализацией печени. Полученная 3D модель LFF позволяет точно визуализировать и измерять распределение содержания жира по всему объему печени. Этот метод демонстрирует существенную клиническую полезность для точной диагностики стеатоза печени.

протокол

Исследование было одобрено, и пациент был набран из отделения инфекционных заболеваний больницы Дунчжимэнь Пекинского университета китайской медицины в Пекине, Китай. Пациент прошел плановое МРТ брюшной полости по методу Диксона после предоставления информированного согласия. В данном исследовании был использован подход 3D-моделирования распределения для реконструкции фракции жира печени (LFF) у стандартного пациента с медикаментозно диагностированным стеатозом печени. Кроме того, исследование дает количественную оценку, сравнивая печень пациента со здоровой печенью. Программные средства, использованные в данном исследовании, перечислены в таблице материалов.

1. Подготовка и сбор данных

ПРИМЕЧАНИЕ: Дисперсия параметров не зависит от исследовательского подхода. В этом исследовании были получены подлинные данные DICOM из клинической визуализации. Данные были получены с помощью аппарата МРТ с напряженностью поля 1,5 Тесла. Набор данных состоит из четырех отдельных фаз, полученных из последовательности Диксона, а именно: In-phase, Out-of-phase, Water и Fat.

  1. Проверьте последовательность Диксона для верхней части живота.
    1. Скопируйте все данные DICOM в настраиваемый рабочий каталог.
      ПРИМЕЧАНИЕ: Рабочий каталог одинаков как в операционной системе, так и в MATLAB.
    2. Перейдите в каталог, содержащий данные в текущем рабочем каталоге MATLAB (как показано на рисунке 1).
    3. Убедитесь, что данные DIXON отображают горизонтальное разрешение 520 x 704 пикселя, с интервалом между пикселями 0,5682 мм и толщиной среза 5 мм.
  2. Быстрая проверка изображений Диксона.
    1. Измените каталог, чтобы получить доступ к папкам для различных фаз, включая фазы In-phase, Out-phase, Water и Fat, каждая из которых хранится в отдельных папках для визуализации Dixon.
    2. Используйте функцию Slice_View для визуализации изображений для каждого этапа.
    3. На рисунке 2 показано изображение интерактивного графического интерфейса пользователя (GUI) последовательности MRI-Dixon. Используйте полосу прокрутки, расположенную в нижней части графического интерфейса, для эффективной навигации по различным последовательностям.
    4. Используйте синфазную последовательность МРТ-Диксона для улучшения описания границ тканей печени.
      ПРИМЕЧАНИЕ: На рисунке 2 можно найти значки, расположенные в правом верхнем углу графического интерфейса. Эти значки предлагают такие функции, как уменьшение масштаба, увеличение, возврат к глобальному представлению и пометка координат выбранного пикселя. Используйте функцию масштабирования, чтобы внимательно изучить локальные особенности поражения.
    5. Используйте функцию Пометить пиксельные координаты для вычисления расстояния между двумя точками, что помогает в измерении размеров конкреций.
    6. Начальная цветовая полоса использует цветовую карту струи, которая означает изменение цвета от синего к красному, обозначая низкие и высокие значения соответственно. Чтобы переключиться на стандартную серую цветовую карту и сбросить весь графический интерфейс, щелкните правой кнопкой мыши на цветовой панели и выберите опцию во всплывающем меню.
    7. Если окно фильтра по умолчанию не подходит, отрегулируйте его, перетаскивая вверх и вниз в середине фигуры с помощью левой кнопки мыши, чтобы изменить уровень окна. Перетаскивание влево и вправо регулирует ширину окна, а точный диапазон фильтрации будет отображаться на цветовой панели.
      ПРИМЕЧАНИЕ: Последующие операции будут сосредоточены на использовании синфазной последовательности DIXON для представления 3D-области печени.

2. Извлечение 3D-области печени

ПРИМЕЧАНИЕ: Для вычисления фракции жира в печени (LFF) каждый воксель в 3D-области печени выступает в качестве пространственного носителя, а его значение жировой фракции получено из данных МРТ-Диксона. Перед расчетом LFF очень важно извлечь 3D-область печени. Несмотря на то, что методы глубокого обучения могли бы достичь этого более эффективно, основное внимание здесь уделяется использованию зрелых программных инструментов, таких как MIMICS, для извлечения участков печени.

  1. Откройте программу MIMICS и выберите «Новый проект». В открывшемся диалоговом окне найдите папку, содержащую образы DIXON Out-phase. Продолжите, нажав NEXT, а затем нажмите Convert , чтобы войти в режим редактирования эпизода.
  2. Сгенерируйте пустую маску, нажав кнопку Создать в диалоговом окне МАСКА , расположенном справа, и выберите максимальный порог.
  3. Используйте инструмент «Редактировать маски », расположенный под меткой «Сегмент», чтобы очертить область печени на всех горизонтальных видах.
  4. Создайте 3D-пространственное представление печени, выбрав маску печени, изображенную ранее, и щелкнув по кнопке Вычислить деталь из маски. Будет представлен получившийся 3D-участок печени (см. рис. 3).
  5. Перейдите в раздел «Файл», затем выберите «Экспорт» и выберите параметр DICOM. Во всплывающем диалоговом окне выберите маску печени, укажите путь к файлу и имена, а затем нажмите кнопку ОК, чтобы экспортировать 3D-область печени в назначенные файлы DICOM.

3. Генерация карты фракций жира (FF-Map)

ПРИМЕЧАНИЕ: Карта фракций жира (FF-Map) имеет диапазон значений от 0 до 1. В этом исследовании FF каждого воксела рассчитывается путем деления значения воксела In-phase минус Water-only на значение In-phase с помощью МРТ Диксона.

  1. Измените каталог на папку In-phase images и выберите функцию Volume_In для создания in-phase volume.
  2. Измените каталог на папку изображений, предназначенных только для воды, и выберите функцию Volume_Water , чтобы создать том только для воды.
  3. Выберите функцию FF_Volume , используя два объема, сгенерированные на шагах 3.1 и 3.2, в качестве входных данных, чтобы получить FF-объем МРТ брюшной полости, визуализированный, как показано на рисунке 4.
  4. Карта Fat Fraction (FF), показанная на рисунке 4 , представлена в виде RGB-изображения в истинных цветах со структурой данных матрицы 520 x 704 x 44. В этом представлении каждый пиксель состоит из трех значений, представляющих красный, зеленый и синий каналы. Обратите внимание на цветовую полосу с левой стороны, которая служит визуальным ориентиром для значений жирных фракций, связанных с пикселями разного цвета.
    ПРИМЕЧАНИЕ: Графический интерфейс, показанный на рисунке 4 , позволяет более внимательно наблюдать за печенью пациента с помощью инструмента масштабирования в правом верхнем углу и получать точные значения FF с помощью инструмента зондирования. Перетаскивая полосу прокрутки внизу, пользователи могут наблюдать FF-карты всех позиций сканирования в горизонтальной плоскости.

4. 3D-объем распределения фракций жира в печени

ПРИМЕЧАНИЕ: На рисунке 4 показана карта LFF, рассчитанная на основе МРТ-изображений верхней части брюшной полости по методу Диксона. В сочетании с 3D-областью печени на рисунке 3 можно отдельно рассчитать объем 3D-LFF всей печени.

  1. Используйте функцию LFF_Volume , предоставив ей 3D-область печени (как показано на рисунке 3) и карту жесткости печени (показана на рисунке 4) в качестве входных параметров. Это приведет к созданию 3D-объемного представления фракции жира печени, как показано на рисунке 5.
  2. Чтобы изучить карту жесткости для каждого слоя печени, просто используйте полосу прокрутки, расположенную под графическим интерфейсом, показанным на рисунке 5.
    ПРИМЕЧАНИЕ: На этом снимке точно изображена только ткань печени.
  3. Обратите внимание на иконки, расположенные в правом верхнем углу графического интерфейса (как показано на рисунке 5). Эти значки предоставляют функциональные возможности для уменьшения масштаба, увеличения, возврата к глобальному представлению и обозначения координат выбранного пикселя.
    ПРИМЕЧАНИЕ: Цветовая полоса по умолчанию использует цветовую карту "jet", где цвета переходят от синего к красному, представляя изменяющиеся значения (измеряемые в единицах кПа) от низкого до высокого.
  4. Запустите функцию LFF_Distribution , используя те же входные параметры, что и "LFF_Volume", чтобы получить пространственное распределение 3D-фракции жира печени (3D-LFF), как показано на рисунке 6.

Количественный анализ 5. 3D-LFF

ПРИМЕЧАНИЕ: Нормальные вокселы печени: LFF < 5%; Вокселы легкой жировой дистрофии печени: 5%-10%; Воксели умеренной жировой дистрофии печени: 10%-20%; Тяжелые жировые вокселы печени: LFF ≥ 20%11,12,13,14,15. Ключевым количественным фокусом данного исследования является определение доли вокселей на разных стадиях LFF в печени пациента. На рисунке 6 показано неравномерное пространственное распределение фракции жира печени у пациента. Отсутствие отчетливых клинических симптомов в первую очередь связано со значительной долей нормальной ткани печени. Поэтому необходимо провести точную количественную оценку различий между пациентами и здоровыми людьми. Это представляет собой жизненно важное количественное понятие.

  1. Рассчитайте распределение 3D-LFF для здоровой печени, повторив шаги 1-4.
    ПРИМЕЧАНИЕ: Встроенная функция MATLAB позволяет сравнивать распределения 3D-LFF для здоровой и жировой дистрофии печени (рис. 7).

Результаты

В этом исследовании используются фактические наборы данных пациентов, полученные с помощью коммерчески доступного МРТ-сканера, для проверки 3D-методологии количественного определения фракции жира в печени (рис. 1). Протокол МРТ включал четырехфазную визуализацию по Дик...

Обсуждение

В данном исследовании представлена инновационная методика 3D-количественной оценки для анализа распределения фракции жира печени (LFF) с помощью МРТДиксона 9,10. Интегрируя карты LFF, которые генерируются на основе синфазных и водных изображений, с 3D-контура?...

Раскрытие информации

Программный инструмент для количественной оценки стеатоза печени, указанный в таблице материалов данного исследования как HepaticSteatosis V1.0, является продуктом компании Beijing Intelligent Entropy Science & Technology Co., Ltd. Права интеллектуальной собственности на этот программный инструмент принадлежат компании.

Благодарности

Данная публикация получила поддержку пятой национальной программы по выявлению выдающихся клинических талантов в области традиционной китайской медицины, организованной Национальным управлением традиционной китайской медицины. Официальная ссылка на сеть: http://www.natcm.gov.cn/renjiaosi/zhengcewenjian/2021-11-04/23082.html.

Материалы

NameCompanyCatalog NumberComments
MATLABMathWorks 2022BComputing and visualization 
MimicsMaterialiseMimics Research V20Model format transformation
Tools for 3D_LFFIntelligent EntropyHepaticSteatosis V1.0Beijing Intelligent Entropy Science & Technology Co Ltd.
Modeling for CT/MRI fusion

Ссылки

  1. Pouwels, S., et al. Non-alcoholic fatty liver disease (NAFLD): a review of pathophysiology, clinical management and effects of weight loss. BMC Endocr Disord. 22 (1), 63 (2022).
  2. Younossi, Z. M., et al. The global burden of liver disease. Clin Gastroenterol Hepatol. 21 (8), 1978-1991 (2023).
  3. Younossi, Z., et al. Global burden of NAFLD and NASH. Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 15 (1), 11-20 (2018).
  4. Boyum, J. H., et al. Incidence and risk factors for adverse events related to image-guided liver biopsy. Mayo Clin Proc. 91 (3), 329-335 (2016).
  5. Khalifa, A., Rockey, D. C. The utility of liver biopsy in 2020. Curr Opin Gastroenterol. 36 (3), 184-191 (2020).
  6. Sumida, Y., Nakajima, A., Itoh, Y. Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol. 20 (2), 475-485 (2014).
  7. Ajmera, V., Loomba, R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Mol Metab. 50, 101167 (2021).
  8. Castera, L., Friedrich-Rust, M., Loomba, R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology. 156 (5), 1264-1281 (2019).
  9. Jiang, Y., et al. Application of multi-echo Dixon and MRS in quantifying hepatic fat content and staging liver fibrosis. Sci Rep. 13 (1), 12555 (2023).
  10. Yang, Y., et al. The accuracy and clinical relevance of the multi-echo dixon technique for evaluating changes to hepatic steatosis in patients with non-alcoholic fatty liver disease treated with formulated food. Magn Reson Med Sci. 22 (2), 263-271 (2023).
  11. Peng, H., et al. Fat-water separation based on Transition REgion Extraction (TREE). Magn Reason Med. 82 (1), 436-448 (2019).
  12. Hines, C. D. G., et al. T(1) independent, T(2)(*) corrected chemical shift based fat-water separation with multi-peak fat spectral modeling is an accurate and precise measure of hepatic steatosis. Magn Reason Imaging. 33 (1), 873-881 (2011).
  13. Tang, A., et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology. 267 (2), 422-431 (2013).
  14. Caussy, C., Reeder, S. B., Sirlin, C. B., Loomba, R. Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH Trials. Hepatology. 68 (2), 763-772 (2018).
  15. Reeder, S. B., Cruite, I., Hamilton, G., Sirlin, C. B. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. Magn Reson Imaging. 34 (4), 729-749 (2011).

Перепечатки и разрешения

Запросить разрешение на использование текста или рисунков этого JoVE статьи

Запросить разрешение

Смотреть дополнительные статьи

JoVE200LFF3D3D LFFLFF

This article has been published

Video Coming Soon

JoVE Logo

Исследования

Образование

О JoVE

Авторские права © 2025 MyJoVE Corporation. Все права защищены