Sign In

2.21 : Vaporization

The physical form of a substance changes by changing its temperature. For example, raising the temperature of a liquid causes the liquid to vaporize (convert into vapor). The process is called vaporization—a surface phenomenon. For vaporization to occur, kinetic energy must be greater than the intermolecular forces that keep molecules bonded. The amount of energy needed to vaporize a quantity of liquid at a given pressure and a constant temperature is called the heat of vaporization. When liquid water is vaporized, it turns into steam.

Heating a liquid until it reaches its boiling point is one method of vaporization. Boiling occurs when vapor bubbles form beneath the surface of the liquid. The boiling point varies based on atmospheric pressure. With more atmospheric pressure, more energy is needed to reach the boiling point. At sea level, water boils at the normal or atmospheric boiling point (100 ⁰C or 212 ⁰F). At higher elevations, water requires less energy to boil. For instance, water boils at about 71 ⁰C (160 ⁰F) on Mount Everest.

Evaporation, another type of vaporization, occurs below the boiling point. In this process, water molecules with enough kinetic energy to surpass intermolecular forces escape the surface of the water as vapor. The remaining water molecules have lower kinetic energy. If this happens on a large scale, the overall kinetic energy of the liquid mass decreases, cooling the liquid. Sweating takes advantage of the phenomenon of evaporation to decrease body temperature. When perspiration evaporates off the body, the remaining sweat is cooler and helps to absorb heat from the body.

The evaporative properties of water are also used by plants to help move water up through the plant. On an environmental scale, water evaporation is the engine that drives the water cycle and much of the Earth's weather and climate.

Tags
VaporizationLiquid To GasBoiling PointHeat Of VaporizationEvaporationSweatCoolingTranspirationTemperature ChangeSurface PhenomenonIntermolecular Forces

From Chapter 2:

article

Now Playing

2.21 : Vaporization

Chemistry of Life

33.4K Views

article

2.1 : The Periodic Table and Organismal Elements

Chemistry of Life

158.3K Views

article

2.2 : Atomic Structure

Chemistry of Life

177.9K Views

article

2.3 : Electron Behavior

Chemistry of Life

94.1K Views

article

2.4 : Electron Orbital Model

Chemistry of Life

65.6K Views

article

2.5 : Elements and Compounds

Chemistry of Life

91.0K Views

article

2.6 : Molecular Shapes

Chemistry of Life

54.3K Views

article

2.7 : Carbon Skeletons

Chemistry of Life

102.9K Views

article

2.8 : Chemical Reactions

Chemistry of Life

85.4K Views

article

2.9 : Isotopes

Chemistry of Life

53.2K Views

article

2.10 : Covalent Bonds

Chemistry of Life

139.0K Views

article

2.11 : Ionic Bonds

Chemistry of Life

112.5K Views

article

2.12 : Hydrogen Bonds

Chemistry of Life

113.7K Views

article

2.13 : Van der Waals Interactions

Chemistry of Life

60.3K Views

article

2.14 : States of Water

Chemistry of Life

48.1K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved