Plants often form mutualistic relationships with soil-dwelling fungi or bacteria to enhance their roots’ nutrient uptake ability. Root-colonizing fungi (e.g., mycorrhizae) increase a plant’s root surface area, which promotes nutrient absorption. While root-colonizing, nitrogen-fixing bacteria (e.g., rhizobia) convert atmospheric nitrogen (N2) into ammonia (NH3), making nitrogen available to plants for various biological functions. For example, nitrogen is essential for the biosynthesis of the chlorophyll molecules that capture light energy during photosynthesis. Bacteria and fungi, in return, gain access to the sugars and amino acids secreted by the plant’s roots. A variety of plant species evolved root-bacteria and root-fungi nutritional adaptation to thrive.
Other plant species, such as epiphytes, parasites, and carnivores, evolved nutritional adaptations that allowed them to use different organisms for survival. Rather than compete for bioavailable soil nutrients and light, epiphytes grow on other living plants (especially trees) for better nutritional opportunities. Epiphyte-plant relationships are commensal, as only the epiphyte benefits (i.e., better nutrient and light access for photosynthesis) while its host remains unaffected. Epiphytes absorb nearby nutrients through either leaf structures called trichomes (e.g., bromeliads) or aerial roots (e.g., orchids).
Unlike epiphytes, parasitic plants absorb nutrients from their living hosts. Non-photosynthetic dodder, for example, is a holoparasite (i.e., total parasite) that completely depends on its host. Hemiparasites (i.e., partial parasites), such as mistletoe, use their host for water and minerals but are otherwise fully photosynthetic. While both dodder and mistletoe employ haustoria to divert hosts’ nutrients, other parasitic species tap into mycorrhizae associated with other plants to absorb nutrients (e.g., Indian pipe). Indian pipe is non-photosynthetic and relies on this interaction for survival. In parasite-plant relationships, parasites derive nutrients at hosts’ expense.
Carnivorous plants are photosynthetic but live in habitats that lack essential nutrients, such as nitrogen and phosphorus. These plants supplement their nutrient-poor diet by trapping and consuming insects and other small animals. Carnivorous plants developed modified leaves that assist in capturing prey through funnel (e.g., pitcher plant), sticky tentacle (e.g., sundew), or jaw-like (e.g., Venus flytrap) mechanisms. Carnivorous plant-small animal relationships are fundamentally predator-prey relationships. Understanding these plant nutritional adaptations reveals important ecological information, such as which nutrients are essential for plant growth as well as the nutrient status of a given habitat.
From Chapter 34:
Now Playing
Plant Structure, Growth, and Nutrition
12.4K Views
Plant Structure, Growth, and Nutrition
41.4K Views
Plant Structure, Growth, and Nutrition
59.3K Views
Plant Structure, Growth, and Nutrition
55.5K Views
Plant Structure, Growth, and Nutrition
54.5K Views
Plant Structure, Growth, and Nutrition
51.5K Views
Plant Structure, Growth, and Nutrition
51.8K Views
Plant Structure, Growth, and Nutrition
38.2K Views
Plant Structure, Growth, and Nutrition
49.3K Views
Plant Structure, Growth, and Nutrition
22.6K Views
Plant Structure, Growth, and Nutrition
8.1K Views
Plant Structure, Growth, and Nutrition
27.1K Views
Plant Structure, Growth, and Nutrition
14.9K Views
Plant Structure, Growth, and Nutrition
21.9K Views
Plant Structure, Growth, and Nutrition
26.6K Views
See More
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved