Sign In

Overview

Exposure to mutagens can damage DNA and result in bulky lesions that distort the double-helix structure or impede proper transcription. Damaged DNA can be detected and repaired in a process called nucleotide excision repair (NER). NER employs a set of specialized proteins that first scan DNA to detect a damaged region. Next, NER proteins separate the strands and excise the damaged area. Finally, they coordinate the replacement with new, matching nucleotides.

DNA distortion and damage

Cells are regularly exposed to mutagens—factors in the environment which can damage DNA and generate mutations. UV radiation is one of the most common mutagens and is estimated to introduce a significant number of changes to DNA. These include bends or kinks in the structure which can block DNA replication or transcription. If these errors are not fixed, the damage can cause mutations which in turn can result in cancer or disease depending on which sequences are disrupted.

Identification and repair of damaged regions

Nucleotide excision repair relies on specific protein complexes to recognize damaged regions of DNA and flag them for removal and repair. In prokaryotes, the process involves three proteins—UvrA, UvrB, and UvrC. The first two proteins work together as a complex, traveling along the DNA strands to detect any physical aberrations.

Once identified, the strands at the damaged location are separated, and endonuclease enzymes such as UvrC cut and excise the affected region. DNA polymerase fills the gap with new nucleotides, and then the DNA ligase enzyme seals the edges between the new and old DNA.

Mutations in NER have severe consequences

In prokaryotes, the NER complex consists of the three Uvr proteins, but in eukaryotes, more than a dozen proteins operate to regulate DNA repair. In humans, mutations in the NER pathway can cause diseases such as xeroderma pigmentosum (XP), which is associated with a 2000-fold increase in the incidence of skin cancer. Individuals suffering from XP are highly sensitive to UV exposure and can develop severe skin burns after just a few minutes of exposure to sunlight. Additionally, XP patients can show signs of premature aging and often develop neurological abnormalities. Without a properly working repair mechanism, DNA damage can accumulate and lead to abnormal cell death or potentially cancerous tumors.

Tags
Nucleotide Excision RepairDNA RepairDamaged DNADNA Damage RecognitionDNA LesionRepair MechanismDNA Helix DistortionExcision Of Damaged NucleotidesRepair ProteinsUV RadiationChemical Mutagens

From Chapter 7:

article

Now Playing

7.4 : Nucleotide Excision Repair

DNA Repair and Recombination

34.7K Views

article

7.1 : Overview of DNA Repair

DNA Repair and Recombination

24.5K Views

article

7.2 : Base Excision Repair

DNA Repair and Recombination

19.6K Views

article

7.3 : Long-patch Base Excision Repair

DNA Repair and Recombination

6.7K Views

article

7.5 : Translesion DNA Polymerases

DNA Repair and Recombination

9.2K Views

article

7.6 : Fixing Double-strand Breaks

DNA Repair and Recombination

11.2K Views

article

7.7 : DNA Damage can Stall the Cell Cycle

DNA Repair and Recombination

8.8K Views

article

7.8 : Homologous Recombination

DNA Repair and Recombination

48.6K Views

article

7.9 : Restarting Stalled Replication Forks

DNA Repair and Recombination

5.5K Views

article

7.10 : Gene Conversion

DNA Repair and Recombination

9.3K Views

article

7.11 : Overview of Transposition and Recombination

DNA Repair and Recombination

13.2K Views

article

7.12 : DNA-only Transposons

DNA Repair and Recombination

13.6K Views

article

7.13 : Retroviruses

DNA Repair and Recombination

10.7K Views

article

7.14 : LTR Retrotransposons

DNA Repair and Recombination

16.8K Views

article

7.15 : Non-LTR Retrotransposons

DNA Repair and Recombination

10.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved