Sign In

3.6 : Conformations of Ethane and Propane

In an organic molecule, free rotation about the carbon-carbon single bond results in energetically different conformers of the molecule. Due to this rotation, called the internal rotation, ethane has two major conformations — staggered and eclipsed.

Staggered conformation is a low energy and more stable conformation with the C-H bonds on the front carbon placed at 60°dihedral angles relative to the C-H bonds on the back carbon, leading to a reduced torsional strain. In staggered ethane, the bonding molecular orbital of one C-H bond interacts with the antibonding molecular orbital of the other, thereby further stabilizing the conformation. The rotation of farther carbon while keeping the carbon nearer to the observer stationary generates an infinite number of conformers. At 0° dihedral angles, the C-H groups cover one another to form an eclipsed conformation. This conformation has about 12 kJ/mol more torsional strain than the staggered conformation and hence is less stable. Ethane molecules rapidly interconvert between several staggered states while passing through the higher energy eclipsed states. The molecular collisions provide the energy required to cross this torsional barrier.

Similar to ethane, propane also has two major conformers: the stable staggered conformer (low energy) and the unstable eclipsed conformer (higher energy).

Tags
ConformationsEthanePropaneOrganic MoleculeCarbon carbon Single BondRotationInternal RotationStaggered ConformationEclipsed ConformationTorsional StrainBonding Molecular OrbitalAntibonding Molecular OrbitalDihedral AnglesTorsional Barrier

From Chapter 3:

article

Now Playing

3.6 : Conformations of Ethane and Propane

Alkanes and Cycloalkanes

11.5K Views

article

3.1 : Structure of Alkanes

Alkanes and Cycloalkanes

22.1K Views

article

3.2 : Constitutional Isomers of Alkanes

Alkanes and Cycloalkanes

16.3K Views

article

3.3 : Nomenclature of Alkanes

Alkanes and Cycloalkanes

15.7K Views

article

3.4 : Physical Properties of Alkanes

Alkanes and Cycloalkanes

9.4K Views

article

3.5 : Newman Projections

Alkanes and Cycloalkanes

13.2K Views

article

3.7 : Conformations of Butane

Alkanes and Cycloalkanes

11.4K Views

article

3.8 : Cycloalkanes

Alkanes and Cycloalkanes

10.4K Views

article

3.9 : Conformations of Cycloalkanes

Alkanes and Cycloalkanes

10.1K Views

article

3.10 : Conformations of Cyclohexane

Alkanes and Cycloalkanes

9.8K Views

article

3.11 : Chair Conformation of Cyclohexane

Alkanes and Cycloalkanes

11.9K Views

article

3.12 : Stability of Substituted Cyclohexanes

Alkanes and Cycloalkanes

10.7K Views

article

3.13 : Disubstituted Cyclohexanes: <em>cis-trans</em> Isomerism

Alkanes and Cycloalkanes

10.1K Views

article

3.14 : Combustion Energy: A Measure of Stability in Alkanes and Cycloalkanes

Alkanes and Cycloalkanes

5.8K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved