Sign In

Microtubules are the thickest cytoskeletal filaments with a diameter of 25 nm. In prokaryotic organisms, microtubules are commonly found in locomotory appendages like cilia and flagella. In eukaryotic cells, microtubules form specialized extensions for moving fluid over the surface, like those found in cells lining the intestine.

Microtubules have two structurally similar globular protein subunits: α and β tubulins. In the cytosol, the α and β tubulins form a heterodimer. These αβ-heterodimers enter the centrioles, a type of microtubule organizing center (MTOCs), and assemble into a filament with the help of the γ-tubulin ring complex. Each microtubule has 13 protofilaments, each with alternating α and β tubulins.

Microtubules are polar structures with plus (+) and minus (−) ends. The end originating from the MTOCs is the minus end, while the outward-facing end is the plus end. Microtubules are dynamic structures that undergo repeated polymerization and depolymerization. However, these filaments are not flexible; they cannot flex or bend when force is applied, and they will break apart if a deforming force is sufficient.

In microtubules, both α-tubulin and β-tubulin are associated with GTP. The GTP-bound-β-tubulins at the plus end are necessary for microtubule polymerization. GTP-α-tubulin cannot be hydrolyzed to GDP, however, GTP-β-tubulin may be. The hydrolysis of GTP to GDP breaks the lateral interaction between the protofilaments, allowing tubulin monomers to dissociate.

Microtubules have multiple roles within the eukaryotic cell, and they act as tracks for transporting cargo and vesicles within the cell due to their polar nature. Microtubule-associated motor proteins, such as kinesin and cytoplasmic dyneins, transport cargoes throughout the cell.

Tags
MicrotubulesCytoskeletal FilamentsProkaryotic OrganismsLocomotory AppendagesCiliaFlagellaEukaryotic CellsFluid MovementIntestine Lining CellsProtein SubunitsAlpha TubulinBeta TubulinHeterodimerCentriolesMicrotubule Organizing CenterProtofilamentsPolarityDynamic StructuresPolymerizationDepolymerizationFlexibilityGTP bound TubulinsHydrolysis

From Chapter 26:

article

Now Playing

26.1 : Microtubules

The Cytoskeleton II: Microtubules and Intermediate Filaments

6.4K Views

article

26.2 : Microtubule Instability

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.8K Views

article

26.3 : Microtubule Formation

The Cytoskeleton II: Microtubules and Intermediate Filaments

5.1K Views

article

26.4 : Microtubule Associated Proteins (MAPs)

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.5K Views

article

26.5 : Destabilization of Microtubules

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.4K Views

article

26.6 : Microtubule Associated Motor Proteins

The Cytoskeleton II: Microtubules and Intermediate Filaments

7.0K Views

article

26.7 : The Movement of Organelles and Vesicles

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.8K Views

article

26.8 : Assembly of Complex Microtubule Structures

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.7K Views

article

26.9 : Microtubules in Cell Motility

The Cytoskeleton II: Microtubules and Intermediate Filaments

2.9K Views

article

26.10 : Mechanism of Ciliary Motion

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.4K Views

article

26.11 : Microtubules in Signaling

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.6K Views

article

26.12 : Drugs that Stabilize Microtubules

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.9K Views

article

26.13 : Drugs that Destabilize Microtubules

The Cytoskeleton II: Microtubules and Intermediate Filaments

1.8K Views

article

26.14 : The Structure of Intermediate Filaments

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.4K Views

article

26.15 : Types of Intermediate Filaments

The Cytoskeleton II: Microtubules and Intermediate Filaments

3.2K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved