Sign In

5.3 : Properties of Organometallic Compounds

Organometallic compounds are compounds that contain a carbon–metal bond. Carbon belongs to an organyl group like alkyl, aryl, allyl, or benzyl groups. The metal can be from Group I or Group II of the periodic table, a transition metal, or a semimetal.

Figure1

The carbon–metal bond is polar in nature. The carbon atom is more electronegative than the metal. As a result, the electrons in the carbon–metal bond are pulled towards the carbon atom, making the carbon electron-rich, like a carbanion. The carbanionic character makes an organometallic compound a strong base and a strong nucleophile.

Figure2

The reactivity of an organometallic compound results from the difference in polarity between the carbon and the metal. As the electronegativity difference increases, the percent ionic character of carbon–metal bond increases. That is to say, as the carbon atom becomes more nucleophilic, the compound becomes more reactive. For example, the carbon–metal bond in organolithium and organomagnesium compounds is more polar than in the organocuprates. Therefore, both organolithium and organomagnesium compounds are more reactive than organocuprates.

Organometallic compounds are named by identifying the metal and using it as the base name. Next, the organyl substituent is identified and used as a prefix to the base name. Further, multiplier prefixes denote the number of such organyl groups present.

Figure3

If the metal bears any non-carbon substituent, it is identified as an anion and named after the metal.

Figure4

Tags
Organometallic CompoundsCarbon metal BondPolarityElectronegativityCarbanionic CharacterBasicityNucleophilicityReactivityOrganolithiumOrganomagnesiumOrganocupratesNomenclature

From Chapter 5:

article

Now Playing

5.3 : Properties of Organometallic Compounds

Complexometric Titration, Precipitation Titration, and Gravimetry

595 Views

article

5.1 : Complexometric Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

3.4K Views

article

5.2 : Complexometric Titration: Ligands

Complexometric Titration, Precipitation Titration, and Gravimetry

666 Views

article

5.4 : EDTA: Chemistry and Properties

Complexometric Titration, Precipitation Titration, and Gravimetry

1.2K Views

article

5.5 : EDTA: Conditional Formation Constant

Complexometric Titration, Precipitation Titration, and Gravimetry

407 Views

article

5.6 : EDTA: Auxiliary Complexing Reagents

Complexometric Titration, Precipitation Titration, and Gravimetry

346 Views

article

5.7 : EDTA: Direct, Back-, and Displacement Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

1.2K Views

article

5.8 : EDTA: Indirect and Alkalimetric Titration

Complexometric Titration, Precipitation Titration, and Gravimetry

380 Views

article

5.9 : Complexometric EDTA Titration Curves

Complexometric Titration, Precipitation Titration, and Gravimetry

550 Views

article

5.10 : Effects of EDTA on End-Point Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

110 Views

article

5.11 : Masking and Demasking Agents

Complexometric Titration, Precipitation Titration, and Gravimetry

1.5K Views

article

5.12 : Precipitation Titration: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

3.1K Views

article

5.13 : Precipitation Titration Curve: Analysis

Complexometric Titration, Precipitation Titration, and Gravimetry

666 Views

article

5.14 : Precipitation Titration: Endpoint Detection Methods

Complexometric Titration, Precipitation Titration, and Gravimetry

979 Views

article

5.15 : Gravimetry: Overview

Complexometric Titration, Precipitation Titration, and Gravimetry

2.7K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved