Sign In

16.19 : Diels–Alder vs Retro-Diels–Alder Reaction: Thermodynamic Factors

The Diels–Alder reaction is thermally reversible, meaning that the reaction reverts to the starting diene and dienophile under suitable temperatures. The forward reaction gives a cyclohexene derivative and is favored at low to medium temperatures. The reverse process, also called retro-Diels–Alder reaction, is a ring-opening process favored at high temperatures.

Figure1

Thermodynamic factors

The influence of temperature on the spontaneity of a particular reaction can be assessed based on the change in the Gibbs free energy, ΔG. If ΔG is negative, the reaction occurs spontaneously. However, if ΔG is positive, the reaction occurs spontaneously in the opposite direction.

Figure2

ΔG is a composite of two terms, ΔH and −TΔS. In a Diels–Alder reaction, two stronger σ bonds are formed at the expense of two weaker π bonds, resulting in a negative ΔH. Cycloaddition reactions proceed with a decrease in entropy. Consequently, ΔS is negative, and the term −TΔS is positive. At low temperatures, the sum of the two terms is negative, implying that the forward reaction is spontaneous. In contrast, the sum is positive at high temperatures, indicating that the reverse reaction is spontaneous.

Tags
Diels Alder ReactionRetro Diels Alder ReactionThermodynamicsGibbs Free EnergyEnthalpy ChangeEntropy ChangeTemperature DependenceCycloadditionCyclohexeneForward ReactionReverse Reaction

From Chapter 16:

article

Now Playing

16.19 : Diels–Alder vs Retro-Diels–Alder Reaction: Thermodynamic Factors

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.3K Views

article

16.1 : Structure of Conjugated Dienes

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.9K Views

article

16.2 : Stability of Conjugated Dienes

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.9K Views

article

16.3 : π Molecular Orbitals of 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

6.6K Views

article

16.4 : π Molecular Orbitals of the Allyl Cation and Anion

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.7K Views

article

16.5 : π Molecular Orbitals of the Allyl Radical

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.0K Views

article

16.6 : Electrophilic 1,2- and 1,4-Addition of HX to 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.4K Views

article

16.7 : Electrophilic 1,2- and 1,4-Addition of X<sub>2</sub> to 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.1K Views

article

16.8 : Electrophilic Addition of HX to 1,3-Butadiene: Thermodynamic vs Kinetic Control

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.2K Views

article

16.9 : UV&ndash;Vis Spectroscopy of Conjugated Systems

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

5.9K Views

article

16.10 : UV&ndash;Vis Spectroscopy: Woodward&ndash;Fieser Rules

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

20.6K Views

article

16.11 : Pericyclic Reactions: Introduction

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

4.4K Views

article

16.12 : Thermal and Photochemical Electrocyclic Reactions: Overview

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.1K Views

article

16.13 : Thermal Electrocyclic Reactions: Stereochemistry

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

1.7K Views

article

16.14 : Photochemical Electrocyclic Reactions: Stereochemistry

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

1.6K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved