Sign In

21.19 : Olefin Metathesis Polymerization: Ring-Opening Metathesis Polymerization (ROMP)

Ring-opening metathesis polymerization or ROMP involves strained cycloalkenes as starting materials. The mechanism of ROMP proceeds by reacting cycloalkene with Grubbs catalyst to give metallacyclobutane intermediate which undergoes a ring-opening reaction to form new carbene. The new carbene reacts with another molecule of cycloalkene. Repetition of these steps leads to the formation of an unsaturated open-chain polymer product. All these steps are reversible, however, relieving the ring strain drives the reaction forward.

The characteristic feature of the ROMP is that the unsaturation present in the reactants is conserved in the products. The reactivity of cycloalkenes towards ROMP decreases with an increase in the ring size.

Poly(phenylene vinylene) (PPV), an important polymer having alternating phenyl and vinyl groups used for electro-optical applications, is prepared by ROMP reaction. Acetyl-substituted bicyclooctadiene undergoes ROMP in the presence of Grubbs catalyst and gives processable polymer which upon heating loses two moles of acetic acid and aromatizes to form poly(phenylene vinylene) polymer.

Figure1

Figure 1. ROMP synthesis of poly(phenylene vinylene).

Tags
Olefin Metathesis PolymerizationRing Opening Metathesis PolymerizationROMPCycloalkenesGrubbs CatalystMetallacyclobutaneCarbeneUnsaturated Open chain PolymerRing StrainPoly phenylene VinyleneElectro optical ApplicationsAcetyl substituted BicyclooctadieneProcessable Polymer

From Chapter 21:

article

Now Playing

21.19 : Olefin Metathesis Polymerization: Ring-Opening Metathesis Polymerization (ROMP)

Synthetic Polymers

2.2K Views

article

21.1 : Characteristics and Nomenclature of Homopolymers

Synthetic Polymers

2.5K Views

article

21.2 : Characteristics and Nomenclature of Copolymers

Synthetic Polymers

2.0K Views

article

21.3 : Polymers: Defining Molecular Weight

Synthetic Polymers

2.3K Views

article

21.4 : Polymers: Molecular Weight Distribution

Synthetic Polymers

2.7K Views

article

21.5 : Polymer Classification: Architecture

Synthetic Polymers

2.2K Views

article

21.6 : Polymer Classification: Crystallinity

Synthetic Polymers

2.3K Views

article

21.7 : Polymer Classification: Stereospecificity

Synthetic Polymers

2.1K Views

article

21.8 : Radical Chain-Growth Polymerization: Overview

Synthetic Polymers

2.0K Views

article

21.9 : Radical Chain-Growth Polymerization: Mechanism

Synthetic Polymers

2.1K Views

article

21.10 : Radical Chain-Growth Polymerization: Chain Branching

Synthetic Polymers

1.7K Views

article

21.11 : Anionic Chain-Growth Polymerization: Overview

Synthetic Polymers

1.8K Views

article

21.12 : Anionic Chain-Growth Polymerization: Mechanism

Synthetic Polymers

1.8K Views

article

21.13 : Cationic Chain-Growth Polymerization: Mechanism

Synthetic Polymers

2.0K Views

article

21.14 : Ziegler–Natta Chain-Growth Polymerization: Overview

Synthetic Polymers

2.9K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved