Sign In

15.32 : Factors Affecting α-Alkylation of Ketones: Choice of Base

α-Alkylation of ketones is achieved in the presence of alkyl halides and a base. The reaction proceeds via the formation of an enolate ion followed by nucleophilic substitution. The choice of base employed is essential as it is the key factor in determining the reaction outcome.

The reaction involving bases like EtO whose conjugate acid EtOH (pKa = 15.9) is stronger than the ketone (pKa = 19.2) results in an equilibrium mixture with higher ketone concentration. As a consequence, side reactions become predominant over α-alkylation. Using bases like LDA, whose conjugate acid NH(CHMe2)2 is weaker (pKa = 36) than the ketones, leads to an irreversible enolate ion formation, excluding undesirable side reactions. Hence, the nucleophilic enolate further undergoes substitution with alkyl halides to produce the desired α-alkylated ketone.

Tags
AlkylationKetonesEnolate IonNucleophilic SubstitutionChoice Of BaseEtOPKa ValuesSide ReactionsLDAIrreversible Enolate FormationAlkyl Halides

From Chapter 15:

article

Now Playing

15.32 : Factors Affecting α-Alkylation of Ketones: Choice of Base

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.1 : Reactivity of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.5K Views

article

15.2 : Reactivity of Enolate Ions

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.2K Views

article

15.3 : Types of Enols and Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.4 : Enolate Mechanism Conventions

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.5 : Regioselective Formation of Enolates

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.3K Views

article

15.6 : Stereochemical Effects of Enolization

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.8K Views

article

15.7 : Acid-Catalyzed α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.2K Views

article

15.8 : Base-Promoted α-Halogenation of Aldehydes and Ketones

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.1K Views

article

15.9 : Multiple Halogenation of Methyl Ketones: Haloform Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

1.7K Views

article

15.10 : α-Halogenation of Carboxylic Acid Derivatives: Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.11 : α-Bromination of Carboxylic Acids: Hell–Volhard–Zelinski Reaction

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.7K Views

article

15.12 : Reactions of α-Halocarbonyl Compounds: Nucleophilic Substitution

α-Carbon Chemistry: Enols, Enolates, and Enamines

3.0K Views

article

15.13 : Nitrosation of Enols

α-Carbon Chemistry: Enols, Enolates, and Enamines

2.0K Views

article

15.14 : C–C Bond Formation: Aldol Condensation Overview

α-Carbon Chemistry: Enols, Enolates, and Enamines

10.4K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved