Sign In

16.23 : Diels–Alder Reaction: Characteristics of Dienophiles

In a Diels–Alder reaction, the diene is usually an electron-rich system and acts as a nucleophile, whereas the dienophile is electron-deficient and functions as an electrophile. Much like the diene, the nature of the dienophile significantly impacts the outcome of the reaction.

Characteristics of Dienophiles

Generally, the best dienophiles are alkenes containing electron-withdrawing substituents such as carbonyl, nitrile, and nitro groups. The feasibility of a Diels–Alder reaction depends on the energy difference between the HOMO of the diene and the LUMO of the dienophile. The smaller the HOMO–LUMO gap, the faster the reaction. Electron-withdrawing substituents on the dienophile lower the energy of the LUMO, reducing the HOMO–LUMO gap and speeding up the reaction.

Figure1

With 1,2-disubstituted dienophiles, the stereochemistry of the double bond is preserved, leading to stereospecific outcomes.

Figure2

Cyclic dienophiles give bicyclic products.

Figure3

Tags
Diels Alder ReactionDienophilesElectron rich SystemNucleophileElectron deficientElectrophileElectron withdrawing SubstituentsCarbonylNitrileNitro GroupsHOMOLUMOStereochemistryBicyclic Products

From Chapter 16:

article

Now Playing

16.23 : Diels–Alder Reaction: Characteristics of Dienophiles

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

4.3K Views

article

16.1 : Structure of Conjugated Dienes

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.9K Views

article

16.2 : Stability of Conjugated Dienes

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.9K Views

article

16.3 : π Molecular Orbitals of 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

6.6K Views

article

16.4 : π Molecular Orbitals of the Allyl Cation and Anion

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.7K Views

article

16.5 : π Molecular Orbitals of the Allyl Radical

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.0K Views

article

16.6 : Electrophilic 1,2- and 1,4-Addition of HX to 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

3.4K Views

article

16.7 : Electrophilic 1,2- and 1,4-Addition of X<sub>2</sub> to 1,3-Butadiene

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.1K Views

article

16.8 : Electrophilic Addition of HX to 1,3-Butadiene: Thermodynamic vs Kinetic Control

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.2K Views

article

16.9 : UV&ndash;Vis Spectroscopy of Conjugated Systems

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

5.9K Views

article

16.10 : UV&ndash;Vis Spectroscopy: Woodward&ndash;Fieser Rules

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

20.6K Views

article

16.11 : Pericyclic Reactions: Introduction

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

4.4K Views

article

16.12 : Thermal and Photochemical Electrocyclic Reactions: Overview

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

2.1K Views

article

16.13 : Thermal Electrocyclic Reactions: Stereochemistry

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

1.7K Views

article

16.14 : Photochemical Electrocyclic Reactions: Stereochemistry

Dienes, Conjugated Pi Systems, and Pericyclic Reactions

1.6K Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved