Sign In

21.5 : Assembly of Signaling Complexes

Multiprotein signaling complexes are formed in a dynamic process involving protein-protein interactions at the cytoplasmic domain of transmembrane receptors or enzymatic and non-enzymatic proteins associated with the receptor. These complexes ensure the activation and propagation of intracellular signals that regulate cell functions.

Interaction domains in cell signaling

Interaction domains recognize exposed features of their binding partners containing post-translationally modified sequences, including the phosphotyrosine motifs (SH2) and phosphotyrosine-binding (PTB) domains or proline proline-rich sequences (SH3 domains).

SH2 domains are commonly found in a diverse group of cytoplasmic polypeptides that are targets of receptor tyrosine kinases (RTK) and in receptors for antigens, cytokines, and extracellular matrix components. SH2 domains also recognize three and five residues immediately C-terminal to the phosphotyrosine, thus influencing binding affinity and specificity. The specificity and affinity can be further increased by the ability of SH2 domains to act in synergy with additional interaction domains such as two tandem SH2 domains or an SH2 and SH3 domain. For example, the Grb2 adaptor protein contains an SH2 and an SH3 domain that link a single phosphotyrosine site to multiple intracellular relay proteins. Consequently, it can regulate both MAP kinase and PI3 kinase pathways.

Scaffold proteins

Scaffold proteins serve as docking sites for multiple protein partners in a cascade. The protein partners are closely spaced to cut down the time required for proteins to find their interacting partners in a cascade. An activated membrane receptor sends messages to the protein scaffolds to get loaded with the required signaling proteins. In other cases, signaling proteins are pre-anchored to the scaffold before receiving a message from the receptor to increase efficiency.

Scaffolds associated with G-protein-coupled receptors (GPCRs) interact through their GPCR PDZ domains. This domain facilitates GPCR interactions with the carboxyl-termini of intracellular signaling proteins. Ligand binding causes a change in receptor conformation leading to enhanced interaction of scaffold proteins with G-proteins and GPCRs. One of the best-characterized scaffold families interacting with GPCRs and G proteins is the β-arrestins.

Tags
Signaling ComplexesProtein protein InteractionsTransmembrane ReceptorsIntracellular SignalsInteraction DomainsSH2 DomainsReceptor Tyrosine KinasesBinding AffinityScaffold ProteinsG protein coupled ReceptorsGPCR PDZ Domainsarrestins

From Chapter 21:

article

Now Playing

21.5 : Assembly of Signaling Complexes

Principles of Cell Signaling

4.0K Views

article

21.1 : Overview of Cell Signaling

Principles of Cell Signaling

15.8K Views

article

21.2 : Types of Signaling Molecules

Principles of Cell Signaling

6.5K Views

article

21.3 : Types of Receptors: Cell Surface Receptors

Principles of Cell Signaling

13.4K Views

article

21.4 : Types of Receptors: Internal Receptors

Principles of Cell Signaling

14.9K Views

article

21.6 : Interactions Between Signaling Pathways

Principles of Cell Signaling

4.3K Views

article

21.7 : Amplifying Signals via Second Messengers

Principles of Cell Signaling

4.5K Views

article

21.8 : Amplifying Signals via Enzymatic Cascade

Principles of Cell Signaling

5.7K Views

article

21.9 : Diversity in Cell Signaling Responses

Principles of Cell Signaling

4.1K Views

article

21.10 : Cell Signaling Feedback Loops

Principles of Cell Signaling

4.4K Views

article

21.11 : Cell Signaling in Plants

Principles of Cell Signaling

3.5K Views

article

21.12 : Plant Hormones

Principles of Cell Signaling

3.1K Views

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved