JoVE Logo
Faculty Resource Center

Sign In

Adrenergic agonists' structure-activity relationship (SAR) determines their selectivity and efficacy. These agonists comprise a phenylethylamine moiety with an aromatic ring and an ethylamine side chain.

Aromatic ring substitutions: Substituting the aromatic ring with –OH groups at positions 3 and 4 yields catecholamines (e.g., epinephrine), which have a high affinity for adrenoceptors. Hydrogen bonding between –OH groups and receptors enhances adrenergic activity.

Separation of the aromatic ring and amino group: A two-carbon chain optimally separates the amino group from the ring, as seen in norepinephrine and epinephrine.

Substitutions on the amino, α, and β-carbon: Modifications on the amino group and α-carbon affect potency, selectivity, and duration of action. α-methyl substitution increases α1-receptor selectivity. Substituting the amino group with a bulkier alkyl group increases β2-selectivity.

Optical Isomerism: Optical isomers of adrenergic agonists have different pharmacological properties. Levorotatory β-hydroxyl and dextrorotatory α-methyl substitutions exhibit maximum agonist potency.

Understanding the SAR of adrenergic agonists is crucial for developing targeted and effective medications with specific receptor affinity and selectivity.

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved