19.9 : Steady, Laminar Flow in Circular Tubes

604 views

Hagen-Poiseuille flow describes a viscous fluid's steady, incompressible flow through a cylindrical tube with a constant radius R. This flow profile is often applied to understand fluid transport in narrow channels, such as capillaries. It serves as a foundational example of laminar flow. In this model, cylindrical coordinates (r,θ,z) are used to describe the radial (r), angular (θ), and axial (z) dimensions within the tube. For Hagen-Poiseuille flow, the velocity profile is purely axial, meaning the velocity vector points only along the z-axis and varies solely with the radial distance r from the center of the tube.

The governing equations for fluid motion, the Navier-Stokes equations, simplify under these conditions. Without angular or radial velocity components, the axial velocity vz(r) emerges as a function of r alone. Solving the reduced Navier-Stokes equations yields a parabolic velocity profile:

Fluid dynamics equation: \( v_z/v_{max} = 1 - (r/R)^2 \); velocity profile analysis.

This profile demonstrates that viscous drag decreases the fluid velocity from the maximum at the center to zero at the tube wall. This zero velocity at the boundary, known as the no-slip condition, results from the friction between the fluid and the tube wall. Consequently, the flow is laminar, with fluid particles moving in parallel layers without lateral mixing.

Integrating the velocity profile over the cross-sectional area of the tube yields the volumetric flow rate Q, known as Poiseuille's law:

Poiseuille's law formula, static equilibrium, fluid dynamics equation for flow rate analysis.

Where ΔP is the pressure difference across the length L  of the tube, and μ is the fluid's dynamic viscosity. This relation shows that Q is highly sensitive to the tube's radius, increasing with the fourth power of R. It follows that even a slight increase in radius significantly boosts the flow rate, a principle critical in fluid transport applications.

From Poiseuille's law, the mean velocity V of the fluid can be expressed as:

Poiseuille's law formula diagram, fluid flow through a pipe equation V=R²Δp/8μℓ.

This average velocity is precisely half of the maximum velocity at the tube's center, confirming the parabolic velocity distribution and demonstrating the predictable, layered nature of laminar flow in a cylindrical tube.

Tags

Hagen Poiseuille FlowLaminar FlowCircular TubesViscous FluidCylindrical CoordinatesVelocity ProfileNavier Stokes EquationsNo slip ConditionVolumetric Flow RatePoiseuille s LawPressure DifferenceDynamic ViscosityFluid Transport Applications

From Chapter 19:

Now Playing

19.9 : Steady, Laminar Flow in Circular Tubes

Differential Analysis of Fluid Flow

604 Views

19.1 : Euler's Equations of Motion

Differential Analysis of Fluid Flow

654 Views

19.2 : Stream Function

Differential Analysis of Fluid Flow

1.7K Views

19.3 : Irrotational Flow

Differential Analysis of Fluid Flow

666 Views

19.4 : Velocity Potential

Differential Analysis of Fluid Flow

520 Views

19.5 : Plane Potential Flows

Differential Analysis of Fluid Flow

551 Views

19.6 : Navier–Stokes Equations

Differential Analysis of Fluid Flow

1.2K Views

19.7 : Steady, Laminar Flow Between Parallel Plates

Differential Analysis of Fluid Flow

523 Views

19.8 : Couette Flow

Differential Analysis of Fluid Flow

608 Views

19.10 : Design Example: Flow of Oil Through Circular Pipes

Differential Analysis of Fluid Flow

238 Views