A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Gene function can be obscured in loss-of-function experiments if there is compensation by another gene. The zebrafish model provides a relatively high-throughput means to reveal such functional redundancy in living embryos.
Our goal here is to test the functional redundancy of two transcription factors for specification of cardiomyocyte progenitors. The factors are encoded by the two related genes gata5 and gata6 and we are using the zebrafish model to understand their relative functions1. Our strategy is to block gene function using morpholinos2. We will inject morpholinos for one or the other gene into fertilized eggs, and compare the embryonic phenotype with embryos derived from eggs injected simultaneously with both morpholinos. To simplify the evaluation of phenotypes, we use eggs derived from fish that carry a transgene that expresses GFP in cardiomyocytes.
Step 1. Preparing for microinjection.
A) Setting up breeding pairs of fish
The evening prior to injection, single male and single female adult fish (3-18 months of age) are placed in pairs into breeder tanks separated by a divider until the next morning. We typically set up 10-20 pairs of fish, and these are mated once a week, regardless of whether the eggs will be used, to maintain fecundity. For this experiment we are using a reporter strain, transgenic for cmlc2:egfp, because it provides a simple readout to identify differentiating cardiomyocytes. The next morning, once the lights are turned on, the water is changed, and dividers are pulled from tanks allowing the fish pairs to mate and produce eggs. Egg production can be monitored, and may initiate immediately, or after a period of an hour or more, depending on the fish. Typically, after approximately 20 minutes of uninterrupted mating, eggs are collected using a pipette or strainer and poured into 100 mm Petri dishes containing system water. It is important to monitor egg production in order to assure that embryos are injected between the 1-4 cell stage. By releasing several pairs at a time, it is possible to stagger the egg production and thereby maximize the amount of eggs that can be injected at an early developmental stage. A good pair of fish may generate more than 200 embryos, and it makes no practical sense to collect thousands of eggs at the same time, since a single investigator would not be able to inject them quickly enough before they develop beyond the 4-cell stage. Fish are stimulated to breed on the light cycle, so this is an experiment that requires an early start, and eggs are not usually obtained after noon.
B) Preparing needles
C) Making injection plates
D) Microinjection station and needle calibration
Step 2. Validation of morpholinos targeting two distinct genes
Morpholinos are designed to target the translation initiation site or splice sites of a target mRNA thereby blocking protein synthesis or proper mRNA processing. When analyzing a gene for the first time, we use both types of morpholinos to test if they generate the same phenotype, indicating a specific knockdown. An advantage of the splice-blocker is that you can verify the knockdown of the normal transcript by RT-PCR, which is especially useful if antibodies for the target gene are not available. We will illustrate how a consistent cardiac phenotype is achieved for the gata5 and gata6 genes using morpholinos (gata5 5'UTR MO sequence: 5'-AAGATAAAGCCAGGCTCGAATACAT-3'; gata5 Splice Site MO sequence: 5'-TCTTAAGATTTTTACCTATACTGGA-3'; gata6 5'UTR MO sequence: 5'-AGCTGTTATCACCCAGGTCCATCCA-3').
Step 3. Co-injection of morpholinos at individual threshold doses
The goal of the titration carried out above was to define a threshold dose for each morpholino. In the best-case scenario, essentially 100% of the morphants will display a defined phenotype, if the targeted gene has an essential function. However, you can expect some variability due to mis-injection artifacts. With practice, this should not exceed 10%. Some batches of embryos (including the uninjected controls) may not survive well, in which case the experiment may need to be discounted. Meanwhile, there is also biological variability, since individual embryos may be more or less tolerant to the knockdown. Finally, some morpholinos may just not be efficient enough to achieve a robust (penetrant) knockdown. If a phenotype is generated in a low percentage of embryos, but is reproducible, it may be worth testing a distinct morpholino. The goal of this next experiment is to determine if an entirely new phenotype is seen when both genes are targeted simultaneously. We are not simply looking for an increase in the percentage of embryos that have a morphant phenotype, but rather for the generation of a distinct phenotype that is not seen at or above the threshold level when testing either of the individual genes.
Step 4. Evaluation of phenotypes
Representative Results
In our experiment, both the gata5 and gata6 single morphants show reproducible cardiac phenotypes when injected with threshold levels, although there is considerable biological variability3,4. For example, most of the gata5 morphants generate a bifid heart, with GFP expression located in two regions. This occurs because the cardiac progenitors fail to migrate properly to fuse at the midline during heart tube formation. However, some of the gata5 morphants do generate a defective heart tube, and in a small number (5%) there is a significant decrease in the amount of GFP+ cells. We believe this reflects biological variability, but may also be due to the fact that morpholinos are not equivalent to a "null" mutation.
Likewise, the gata6 morphants all show a cardiac phenotype, but there is a range of phenotypes including a small number of bifid heats, and hearts that are morphological disturbed compared to the uninjected control embryos. This variability is not unusual for a cardiac morphogenetic phenotype, since heart formation is a dynamic process and at least some of the heart phenotype may be due indirectly from embryonic morphogenetic defects. However, importantly, the range of cardiac morphogenetic defects for both gata5 and gata6 morphants is consistent and reproducible, and for the most part the embryos generate substantial GFP+ cardiomyocytes.
In stark contrast to the gata5 and gata6 single morphants, embryos depleted of both factors show a complete loss of GFP expression, consistent with a loss of cardiomyocytes. Thus, gata5 and gata6 each have non-redundant functions for cardiac morphogenesis, but the two genes are functionally redundant in a requirement for generation of differentiated cardiomyocytes. Our previous studies showed also a loss of the earliest cardiomyocyte markers, including nkx2.5, suggesting a requirement for cardiomyocyte specification3.
In the experiment described here, we combined two morpholinos, each of which alone generate a distinct range of phenotypes, and found an entirely different phenotype when they were co-injected together. Of course, we needed a justification for doing this experiment in the first place. We suspected that the two genes might compensate each other for an earlier function, in this case cardiac specification. This is because the genes are highly related (and capable of binding to the same DNA sequences) and are expressed in ov...
No conflicts of interest declared.
We thank members of the Evans laboratory for their help in preparing this presentation. The morpholinos used here were originally validated by Dr. Audrey Holtzinger. T.E. is supported by grants from the National Institutes of Health (HL064282 and HL056182). Experiments on animals were performed in accordance with the guidelines and regulations set forth by the Institute for Animal Care and Use Committee, of the Weill Cornell Medical College.
Name | Company | Catalog Number | Comments |
Fish breeder tanks and dividers | Aquatic Habitats | ||
Fish nets | Aquatic Habitats | ||
System water | 60mg Instant Ocean” per liter dH2O | ||
100mm Petri dishes | BD Biosciences | 351029 | |
Micropipette needle puller | Sutter Instrument Co. | P-97 Flaming/Brown | |
3.5" glass capillaries | Drummond Scientific | 3-000-203-G/X | |
Razor blade | Personna Medical Care | 94-120-71 | |
Micro grinder | Narishige International | EG-4 | |
Gridded microscope eyepiece | Premiere | MF-02 | |
Micrometer | WARD’s Natural Science | 94 W 9910 | |
Ultrapure agarose | Invitrogen | 15510-027 | |
Spatula | Fisher Scientific | 14-357Q | |
Scale | Mettler Toledo | AB54-S/FACT | |
Disposable weigh dishes | Fisher Scientific | 2-202-B | |
Conventional microwave | GE Healthcare | ||
Erlenmeyer flask | Corning | 4980 | |
Microscope slides | Fisher Scientific | 12-552 | |
Graduated cylinder | Fisher Scientific | 08-572-6D | |
Automatic pipette man | BrandTech | 2026333 | |
70% ethanol wash solution | Tarr | 801VWR | |
N2 tank | Tech Air | ||
Microinjector | Harvard Apparatus | PLI-100 | |
Micromanipulator | Micro Instruments | LTD | |
Dissecting microscope | Nikon Instruments | SMZ1500 | |
Parafilm | American National Can | PM-992 | |
Mineral oil | Sigma-Aldrich | M5904 | |
Kimwipes | Kimberly-Clark Corporation | 34155 | |
gata5 splice site morpholino | Genetools, LLC | 5’-TCTTAAGATTTTTACCTATACTGGA-3’ | |
gata5 ATG Blocker | Genetools, LLC | 5’-AAGATAAAGCCAGGCTCGAATACAT-3’ | |
gata6 Long Isoform ATG Blocker | Genetools, LLC | 5’-AGCTGTTATCACCCAGGTCCATCCA-3’ | |
Disposable Pasteur Pipette | Fisher Scientific | 13-678-20B | |
Tricaine Methanesulfonate | Argent Labs | MS-222 | |
Methycellulose | ICN Biomedicals | 155495 | |
Heat Block | Fisher Scientific | 11-718-4 | |
Sharp forceps | Dumont | Size 55 | |
Depression Microslides | VWR international | 48339-009 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved