A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This video describes how to perform CO2 measurement in intubated as well as spontaneously breathing patients. The main clinical indications refer to emergency situations: (1) verifying adequate positioning of an endotracheal tube; (2) achieving normocapnia in trauma patients; (3) monitoring ventilation in the case of procedural sedation.
Carbon dioxide (CO2) along with oxygen (O2) share the role of being the most important gases in the human body. The measuring of expired CO2 at the mouth has solicited growing clinical interest among physicians in the emergency department for various indications: (1) surveillance et monitoring of the intubated patient; (2) verification of the correct positioning of an endotracheal tube; (3) monitoring of a patient in cardiac arrest; (4) achieving normocapnia in intubated head trauma patients; (5) monitoring ventilation during procedural sedation. The video allows physicians to familiarize themselves with the use of capnography and the text offers a review of the theory and principals involved. In particular, the importance of CO2 for the organism, the relevance of measuring expired CO2, the differences between arterial and expired CO2, the material used in capnography with their artifacts and traps, will be reviewed. Since the main reluctance in the use of expired CO2 measurement is due to lack of correct knowledge concerning the physiopathology of CO2 by the physician, we hope that this explanation and the video sequences accompanying will help resolve this limitation.
Material Used in Capnography
One of the obstacles to the utilization of expired CO2 monitoring resides in the disparity of the material used by emergency physicians. To clarify this situation, it is important to distinguish whether the patient is artificially ventilated or breathing spontaneously. As for the rest, the different techniques used for analysis no longer have an implication on clinical results and efficiency.
This statement stands in the case of the traditional distinction between sidestream and mainstream capnography. These two techniques measure CO2 using infrared waves; the sidestream system uses an aspiration pump to transport CO2 from the mouth to the detector situated in the monitor, while the mainstream system measures CO2 directly in a small chamber situated at the mouth of the patient and connected to the monitor by a cable. Traditionally, the sidestream system is used for patients breathing spontaneously as the system is lighter, and the mainstream system, a little bulkier, is connected directly to the endotracheal tube in intubated patients. Technological advances in the last years have fundamentally reduced the differences between mainstream and sidestream systems. New technology is pointing towards the microstream system, which is a sort of 'enhanced sidestream system' in which CO2 travels along a thin tube before reaching the chamber where the detector is located, allowing a smaller transition period between the mouth and the detection chamber and thus a capnography curve that is almost synchronized with the passage of air at the mouth. So, let us have a look at what distinguishes the choice of material, as explained in the second half of the video sequence:
The Capnography Curve
A typical capnography curve during three expirations is given in Figure 1. The curve regains the x-axis (0 value) at each inspiration, as there is virtually no CO2 in inspired air.
Figure 1: alternance inspiration-expiration
Differences Between PaCO2 and ETCO2
It would be eutopic to believe that non-invasive monitoring of expired CO2 can replace in all circumstances the need for arterial blood gas (ABG) measures, considered to be the gold standard for the measurement of PaCO2. All depends on the indications for the measurement of expired CO2 and the patient's cardio-respiratory condition. If the indication is the monitoring of respiratory activity to prevent hypoventilation and apnea during sedation, a simple analysis of the curve is sufficient, whatever the value of ETCO2. On the other hand, if the indication is to monitor the adequate ventilation of a head trauma patient with no history of cardio-respiratory disorders, we can expect the ETCO2 value to be close to the PaO2 value, though the necessity of a precise PaCO2 value imposes at least one ABG sample, which also allows us to confirm that indeed ETCO2 is close to PaCO2 in the present case.
Finally, if we are faced with the case of a patient that is intubated and ventilated due to respiratory distress, ETCO2 values will evidently not be a good approximation of PaCO2. The reason is simple; as soon as there is a disturbance in ventilation-perfusion ratios, regardless of what the cardio-pulmonary disorder present is, an obstacle to the correct elimination of CO2 by the lungs is created. As a result, CO2 accumulates in the blood, and naso-buccal elimination is reduced, creating a PaCO2 - ETCO2 gradient. In this circumstance, it is crucial to know the value of PaCO2 before any interpretation of the ETCO2 value.
The first part of the video sequencedescribes the procedure to be followed for interpreting the difference between PaCO2 and ETCO2. We see that the measure of ETCO2 is obtained immediately and in a non-invasive manner, but at this stage cannot allow the adaptation of the respirator's parameters. This implies having to measure the PaCO2 that can then be compared with the ETCO2. The PaCO2 value remains the referral value for the appreciation of patient ventilation.
Artifacts and Traps in Capnography.
If the technology for CO2 measurement has become reliable in terms of precision, reproducibility, response time and curve quality, it still presents, as for any monitored parameter, certain limits:
Importance of CO2 for the Organism
Before exploring expired CO2 monitoring, it is essential to put into perspective the general role played by CO2 in the human body. Produced at a rate of approximately 200 ml per minute, CO2 is not just a wasted by-product of cellular metabolism. If our medullar chemoreceptors have the role of maintaining the arterial CO2 partial pressure (PaCO2) at 40mmHg, it is because CO2 has other functions in the organi...
No conflicts of interest declared.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved