A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Total retinal blood flow is measured by Doppler optical coherence tomography and semi-automated grading software.
Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R2>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the practicality of making these measurements in clinical studies and routine clinical practice.
1. Protocol Text
Figure 1a. Measuring total blood flow with the circumpapillary double-circular scan and the 3D disk scan using DOCTORC.
Figure 1b.
2. Representative Results
Normal and glaucomatous eyes are selected from the Advanced Imaging for Glaucoma Study (AIGS, www.aigstudy.net). 48 eyes were scanned by the "dual-angle" protocol and produced scans that passed the image quality check. Using the DOCTORC software, valid flow measurements could be obtained from 83% of the eyes.
To evaluate the reproducibility of the DOCTORC system, another small dataset with 20 eyes was graded by 3 graders. This dataset was also used to train and test graders. 2 graders used the semi-automated DOCTORC software and 1 used an earlier totally manual software employed in previous publications.2,3 The total retinal blood flows (Table 1) determined by the two graders using DOCTORC software are similar to one another and to flow rates determined by the other grader using the manual software. Only 65% of the eyes had valid results because some of the data were not based on dual angle protocol, but single angle protocol.2 The single angle protocol includes 5 Doppler scans obtained with the OCT beam passing through the center of the pupil. Therefore the Doppler angle is more often small and therefore a greater portion of vessels are usually not gradable.
For all graders, the inter-grader reproducibility, as measured by the coefficient of variation, is similar for both glaucomatous and normal eyes (Table 2). Likewise, the reproducibility measurements for the two methods, DOCTORC and the Manual software,1-5 are similar (Table 2). For three graders, a good correlation exists between total blood flow and the pattern standard deviation from visual field tests (Figure 2) for glaucomatous eyes.
DOCTORC software Manual software3 | |||
Condition | Grader 1 | Grader 2 | |
Normal | 47.0±9.1 | 48.7±7.2 | 48.0±6.5 |
Glaucoma | 36.5±5.5 | 36.7±5.9 | 34.9±5.1 |
Table 1. Total Retinal Blood Flow using 2 Different Software.
Coefficient of Variation | ||
Glaucoma (7 eyes) | ||
Grader 1 vs. Grader 2(DOCTORC) | 9.58% | |
DOCTORC vs. manual method3 | ||
Grader 1 | 8.00% | |
Grader 2 | 9.74% | |
Normal (6 eyes) | ||
Grader 1 vs. Grader 2 (DOCTORC) | 5.99% | |
DOCTORC vs. manual method | ||
Grader 1 | 8.87% | |
Grader 2 | 9.98% |
Table 2. Reproducibility of Total Retinal Blood Flow Measurements.
Figure 2. Correlation between Total Retinal Blood Flow and Visual Field in Glaucoma. a. Grader 1 using DOCTORC software. Visual field loss is summarized by pattern standard deviation (p=0.048). b. Grader 2 using DOCTORC software. Visual field loss is summarized by pattern standard deviation (p=0.032).
Access restricted. Please log in or start a trial to view this content.
Blood flow abnormalities occur in glaucoma and vascular diseases of the retina such as diabetic retinopathy.6-10 Volumetric measurement of retinal blood flow gives valuable information about the disease process.4-6,11,12 DOCTORC provides a practical way to estimate total retinal blood flow based on the measurements in individual vessels determined by Doppler OCT using the double circle scan pattern.1-5
The mean total retinal blood flow measured by Doppler OCT ...
Access restricted. Please log in or start a trial to view this content.
Dr. Huang receives grant support, patent royalty, stock options, travel support and lecture fees from Optovue, Inc.; Dr. Tan and Dr. Wang receives patent royalty and grant support from Optovue, Inc.; Dr. Koduru and Dr. Sadda received grant support from Optovue.
This study is supported by NIH grant RO1 013516 and a grant form Optovue.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
RTVue Fourier Domain optical coherence tomography | Optovue | N/A | Version 6.1.0.21 or higher Installed with blood flow double ring scan pattern |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved