A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This article details the construction of a multiplexed microneedle-based sensor. The device is being developed for in situ sampling and electrochemical analysis of multiple analytes in a rapid and selective manner. We envision clinical medicine and biomedical research uses for these microneedle-based sensors.
The development of a minimally invasive multiplexed monitoring system for rapid analysis of biologically-relevant molecules could offer individuals suffering from chronic medical conditions facile assessment of their immediate physiological state. Furthermore, it could serve as a research tool for analysis of complex, multifactorial medical conditions. In order for such a multianalyte sensor to be realized, it must be minimally invasive, sampling of interstitial fluid must occur without pain or harm to the user, and analysis must be rapid as well as selective.
Initially developed for pain-free drug delivery, microneedles have been used to deliver vaccines and pharmacologic agents (e.g., insulin) through the skin.1-2 Since these devices access the interstitial space, microneedles that are integrated with microelectrodes can be used as transdermal electrochemical sensors. Selective detection of glucose, glutamate, lactate, hydrogen peroxide, and ascorbic acid has been demonstrated using integrated microneedle-electrode devices with carbon fibers, modified carbon pastes, and platinum-coated polymer microneedles serving as transducing elements.3-7,8
This microneedle sensor technology has enabled a novel and sophisticated analytical approach for in situ and simultaneous detection of multiple analytes. Multiplexing offers the possibility of monitoring complex microenvironments, which are otherwise difficult to characterize in a rapid and minimally invasive manner. For example, this technology could be utilized for simultaneous monitoring of extracellular levels of, glucose, lactate and pH,9 which are important metabolic indicators of disease states7,10-14 (e.g., cancer proliferation) and exercise-induced acidosis.15
1. Microneedle Fabrication
2. Fabrication of Carbon Paste Electrode Arrays
3. Synthesis of Functional Carbon Pastes and Packing of Electrode Cavities
4. Detection and sensor calibration
5. Representative Results
When obtaining chronoamperometric curves (e.g., for glucose detection or lactate detection) in quiescent solutions with modified carbon paste-filled microneedles, the current will immediately decrease upon application of the respective detection potential. It will eventually decay to a steady state value. A representative result is shown in Figure 6; this result was obtained from 2 mM additions of lactate and recording at the lactate microneedle. The solution must be briefly stirred after each lactate addition. The current after 15 seconds rises upon increasing the concentration of lactate; the current response can then be used to determine the concentration of lactate in an unknown solution. Alternatively, continuous monitoring can be used in a stirred solution (or in a flowing solution) as demonstrated for a solution with an increasing glucose concentration (Figure 5). Again, the increase in current upon increasing the concentration of glucose can be used to standardize the glucose response to an unknown solution. Sufficient time must be allowed after each spike in order to allow the solution to stabilize. Cyclic voltammograms at the pH sensitive microneedle in 0.1 M phosphate buffer are shown over four different pH solutions from 5 to 8 in 1 pH unit increments in Figure 6. The oxidative peak potential shifts with increasing pH; this phenomenon is used as an indicator of the pH value.
Figure 1. Images of the STL file of the microneedle array created in Solidworks (A) and of the print screen, which shows the support structure (B).
Figure 2. Scanning electron micrographs of the microneedle array (A) and a single microneedle within this array (B).
Figure 3. Schematic of flat flexible cable assembly. The steps involved include modifying the flat flexible cable (A), ablating the patterned circles (B), adding the initially ablated Melinex layer, which is filled with carbon paste (C), as well as adding the second ablated Melinex layer and mating the microneedle array (D). Click here to view larger figure.
Figure 4. Calibration of lactate-sensitive paste with 15 second chronoamperometric scans at -0.15 V in 0.1 M phosphate buffer (pH=7.5). Each increase in current corresponds to a 2 mM addition of lactate.
Figure 5. Calibration of glucose-sensitive paste running chronoamperometric scans at -0.05 V. Each decrease in the response corresponds to a 2 mM addition of glucose. The 0.1 M phosphate buffer solution (pH=7.0) was stirred during calibration. External Ag/AgCl and Pt reference and counter electrodes were used in this study.
Figure 6. Cyclic voltammogram (CV) of pH sensitive carbon paste in 0.1 M phosphate buffer over pH 5-8 in 1 pH unit increments (teal=pH 8.0, green=pH 7.0, purple=pH 6.0, red=pH 5.0). A fifth CV was used for analysis versus Ag/AgCl reference and Pt wire counter electrodes.
Access restricted. Please log in or start a trial to view this content.
Multiple aspects of the design of this microneedle-based sensor were considered prior to device fabrication. In order to use this sensor for real-time detection, the response time of the sensor must be low; in this protocol, each tested sensor exhibited a response time below fifteen seconds. Pastes used in this protocol were also chosen for their selectivity within in vivo environments, which contain electroactive biomolecules that can interfere with electrode response. In addition to paste composition, th...
Access restricted. Please log in or start a trial to view this content.
No conflicts of interest declared.
Sandia is multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United Stated Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. The authors acknowledge funding from Sandia National Laboratories' Laboratory Directed Research & Development (LDRD) program.
Access restricted. Please log in or start a trial to view this content.
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved