Case Presentation (required, if applicable): N.A.; this is still an experimental research procedure, not yet used clinically.
Diagnosis, Assessment, and Plan (required, if applicable): N.A.; this is still an experimental research procedure, not yet used clinically.
Procedure (required): This part should include a step-by-step description of relevant procedures, meeting the guidelines below.
1. Capillary Microscopy (Figure 1)
- Our capillaroscopy technique was adapted from Serne and his colleagues 1. An exclusion criterion for this procedure is collagen vascular disease, since collagen vascular disease produces known capillary changes 2.
- Following a minimum 10-hr overnight fast and 20 min of seated rest, microvascular measurements are conducted for one half-hour between 7 and 11 am, in a quiet, temperature controlled room (maintained between 21.5-22.5 °C), with the subject in the seated position and the left hand at heart level.
- Nailfold capillaries in the dorsal skin of the third finger are visualized using a stereomicroscope (Olympus; Center Valley, PA), linked to a 4 megapixel SPOT Insight monochrome digital camera (Model number IN-1400: Diagnostic Instruments; Sterling Heights, MI), and a laptop computer (Dell Latitude D600: Dell; Austin, TX). To limit movement, the left hand and forearm are loosely covered with a folded blanket, and rested on another folded blanket positioned at the base of the microscope.
- Nailbed illumination is achieved with a 250-W halogen fiber optic lamp (KL 2500LCD:Schott-Fostec; Elmsford, NY); additional illumination from a supplemental 150W fiber optic halogen light source (B&B Microscopes, Ltd., Warrendale, PA) is used in darkly pigmented individuals.
- To visualize the capillaries, the 3.2x objective (Olympus 3.2/0.07) is used with a total system magnification of 38.4x.
- Using SPOT imaging software provided with the camera, light/dark contrast in the capillary photographs is enhanced using the same standard SPOT software function (stretching of bright and dark levels) to maximize visibility of the capillaries in all subjects.
- To quantify capillary density, digital photomicrographs are taken every 3-5 sec during each of three stages, at resting baseline, during postocclusive reactive hyperemia, and during venous occlusion. (a) At resting baseline, photomicrographs are taken over a three-minute period to detect capillaries perfused at rest. (b) During postocclusive reactive hyperemia, photomicrographs are taken to quantify functionally perfused capillaries (baseline plus reserve capillaries), as follows. First, an occlusion cuff on the left upper arm is inflated to 40 mm Hg above systolic pressure for 10 min. Photomicrographs are then taken during the first minute immediately following release of arterial occlusion, visualizing all functionally perfused capillaries. Lower capillary density following reactive hyperemia indicates impaired functional capillary recruitment, and therefore functional rarefaction. (c) During venous occlusion photomicrographs are taken to quantify maximal capillary density, which includes both perfused (with active red blood cell (RBC) motion) and nonperfused (filled with stagnant, non-moving RBCs) capillaries 3 as follows. Following ten minutes of rest after the postocclusive reactive hyperemia procedure, the arm cuff is inflated to 60 mm Hg for 60 sec, passively forcing blood into all patent capillaries present and photomicrographs were taken during this time. Since maximal capillary density includes all capillaries structurally present, a reduction in maximal capillary density indicates structural rarefaction.
- Capillary density is defined as the number of capillaries per square millimeter of nailfold skin, and is computed as the mean of four measurements obtained from the four most clearly focused images, least distorted by movement. In our studies, typical values for capillary counts (capillaries/mm2) have been 55-80 for baseline, 65-90 for post-ischemic, and 90-105 for venous occlusion. Values for percent capillary recruitment are typically between 5% and 25% (mean ~10-15%) and for percent perfused capillaries between 70% and 95% (mean ~80-90%), with values being lower among hypertensives than normotensives. The reproducibility of the counting procedure has been verified with three observers who performed independent manual assessments of photographs of 10 different subjects (Figure 2). The observers were blinded to the identity and blood pressure of these subjects. Following training, subsequent counts performed independently showed a high level of agreement. Average inter-rater and intra-rater discrepancies were of the order of 2-3 capillaries/mm2, and intraclass correlation coefficients were all greater than 0.90. Short-term variation of the capillaroscopy measures were of the same order of magnitude as inter-rater and intra-rater discrepancies (approximately 2 capillaries/mm2), but longer-term variation observed over 2-3 years was an order of magnitude larger (approximately 15 capillaries/mm2), indicating that longitudinal changes can be readily distinguished from rater variation. Reliability of the two capillary function measures was also high (intraclass correlation coefficient = 0.84 for percent capillary recruitment and 0.82 for percent perfused capillaries).
-
The investigators now utilize a computer-based method for quantifying capillary density using Image-Pro Plus imaging software (Version 6.2, Media Cybernetics, Inc., Bethesda, MD: Figure 3). Pearson correlations between baseline, post-ischemic, and venous congestion counts done with the software and corresponding manual counts in 10 subjects were 0.78, 0.78, and 0.71 respectively (all p < 0.05), indicating reasonable agreement between the two methods. Reliability of the computer-based counts is slightly lower than that of manual counts but still high (intraclass correlation coefficient = 0.91 for baseline, 0.86 for post-ischemic, and 0.84 for venous occlusion). We have unpublished data also demonstrating the association of automated counts with multiple cardiovascular risk factors including hypertension, which we are currently preparing for publication.
- Table 1 summarizes the capillary density measurements and calculations. Percent capillary recruitment is assessed by dividing the increase in capillary density induced by postocclusive reactive hyperemia (postocclusive reactive hyperemia capillary density minus baseline capillary density), by the maximal capillary density (observed during passive venous occlusion). Percent perfused capillaries represents the proportion of all capillaries present that are perfused (functionally active), and is calculated by dividing postocclusive reactive hyperemia capillary density by the maximal capillary density. Both percent capillary recruitment and percent perfused capillaries reflect the number of functional capillaries. Lower values for these measures indicate functional capillary rarefaction.
2. Endothelial Function Assessment
- Endothelial function is assessed before and after postocclusive reactive hyperemia, using non-invasive plethysmography measurements of forearm blood flow, according to the method of Sivertsson,4 which utilizes the endothelium-dependent stimulus of reactive hyperemia to induce vasodilation.
- With the subject in the seated position following 10 min of supine rest, a mercury-in rubber strain gauge stretched to 10% beyond its resting length is looped around the subject's forearm 5 cm below the antecubital fossa.
- The strain-gauge is connected to a plethysmograph (EC-4: DE Hokanson, Inc; Bellevue, WA), which in turn is connected to a Doppler recorder (CW-1; DE Hokanson, Inc; Belleveue, WA).
- An upper arm occlusion cuff is applied, and the arm is suspended comfortably at heart level using a sling bandage connected to an adjustable intravenous pole. Systolic and diastolic blood pressures and heart rate are obtained with a Dinamap ProCare 100 automatic BP cuff (GE Healthcare, Piscataway, NJ) placed on the opposite arm.
- A pediatric cuff around the wrist is inflated to 200 mm Hg to occlude flow to the hand. The upper arm cuff is inflated to 50 mm Hg, deflated for 1.5 sec, and then re-inflated rapidly prior to each forearm blood flow measurement, obtained through expansion of the strain gauge placed around the forearm.
- Forearm blood flow (FBF) is measured at rested baseline (FBFbase) and again at postocclusive hyperemia-induced maximal vasodilation (FBFmax). For baseline blood flow measurements, four consecutive FBF curves are obtained within 30 sec (FBFbase).
- The occlusion cuff is then inflated to 40 mm Hg above systolic pressure for 10 min. Following release of arterial occlusion (postocclusive reactive hyperemia), four consecutive FBF curves are obtained within the first 30 sec of flow (FBFmax).
- The ratio FBFmax/FBFbase is computed as an estimate of vasodilation, by dividing the mean of the four FBFmax values by the mean of the four FBFbase values.5 Forearm vascular resistance at maximal vasodilation (FVRmax) is calculated as the mean arterial pressure (MAP) divided by FBFmax. FBFmaxduring reactive hyperemia is directly related to FBF after maximum infusion of intra-arterial acetylcholine, an endothelial-dependent vasodilator.6 Accordingly, FBFmax and the ratio FBFmax/FBFbase are accepted non-invasive measures of endothelial function.6-8 In addition, both FBFmax and FVRmax reflect resistance artery structural changes(increased wall/lumen ratio).9