A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we describe a Schwann cell (SC) migration assay in which SCs are able to develop along extending axons.
The development of peripheral nerves is an intriguing process. Neurons send out axons to innervate specific targets, which in humans are often more than 100 cm away from the soma of the neuron. Neuronal survival during development depends on target-derived growth factors but also on the support of Schwann cells (SCs). To this end SC ensheath axons from the region of the neuronal soma (or the transition from central to peripheral nervous system) to the synapse or neuromuscular junction. Schwann cells are derivatives of the neural crest and migrate as precursors along emerging axons until the entire axon is covered with SCs. This shows the importance of SC migration for the development of the peripheral nervous system and underlines the necessity to investigate this process. In order to analyze SC development, a setup is needed which next to the SCs also includes their physiological substrate for migration, the axon. Due to intrauterine development in vivo time-lapse imaging, however, is not feasible in placental vertebrates like mouse (mus musculus). To circumvent this, we adapted the superior cervical ganglion (SCG) explant technique. Upon treatment with nerve growth factor (NGF) SCG explants extend axons, followed by SC precursors migrating along the axons from the ganglion to the periphery. The beauty of this system is that the SC are derived from a pool of endogenous SC and that they migrate along their own physiological axons which are growing at the same time. This system is especially intriguing, because the SC development along axons can be analyzed by time-lapse imaging, opening further possibilities to gain insights into SC migration.
1. Preparation of Collagen Gels
2. Dissection of Embryonic SCGs
3. Treatment of SCG Explants
4. Time-lapse Imaging
Use an inverted microscope for analyses. Various objectives can be used, defining the field of view and magnification. One important aspect, however, is the working distance of the used objective, as imaging of the SCG explants is performed through the glass slide and the collagen gel. The recording frame rate of 1/10-30 minutes showed good results (2). However, this aspect has to be adjusted to the scientific question. A normal CCD camera can be used for image acquisition. For time lapse imaging a cell culture incubation chamber has to be attached to the stage of the microscope. Incubate the tissue during imaging at 37 °C, with 5% CO2 and humid conditions. Start the incubation system one hour before the start of imaging. This allows the microscope parts (e.g. objective) including the chamber slide to adjust to the temperature and prevents temperature induced drifts. Define specific areas of analyses (within on explant and between different explants) with the help of the microscope software and a software-controlled motorized stage (multiposition setup) for simultaneous analyses of different applied conditions to the SCG explants. For time-lapse imaging wildtype tissue as well as tissue from transgenic animals can be used marking the SCs (s100b:GFP) (3). For imaging fluorophores a fluorescent light source has to be implemented in the micropscope setup. Use standard filters.
5. Quantification of SC migration distances
Axonal growth is facilitated from SCG explants upon treatment with NGF (4) (movie scheme S1 Figure 1 scheme). This process is easily visible by any inverted microscope and can be followed by time-lapse imaging (movie S2). If a scientist is new to dissecting SCG from mouse embryos we strongly recommend a validation of the technique by a simple anti- tyrosine hydroxylase (TH) immunohistochemistry. TH is a common marker for catecholaminergic neurons (in this case sympathetic neurons) ...
The development of the peripheral nervous system is an exciting process. When the development is completed, axons are ensheathed by SCs along the entire length, which can, in humans, often be over 100 cm. To this end the correct number of the required SCs has to be established during development and the SCs also have to move along extending axons to the periphery to ensure the complete axonal coverage. This holds true for myelinated but also for unmeylinated axons. In both cases all axons are in contact with SCs a...
No conflicts of interest declared.
We want to thank Urmas Arumae for sharing a collagen protocol and Jutta Fey and Ursula Hinz for excellent technical assistance. Furthermore we want to thank Christian F. Ackermann, Ulrike Engel and the Nikon Imaging Center at the University of Heidelberg and also Joachim Kirsch for kindly help for the video shoting. The work was partially funded through the Deutsche Forschungsgemeinschaft (SFB 592).
Name | Company | Catalog Number | Comments |
10x MEM | Gibco | 21430 | |
Sodium Bicarbonate (7.5%) | Gibco | 25080 | |
Glutamine | Gibco | 25030 | |
NaOH | Merck | 109137 | |
NGF | Roche | 1058231 | R&D#556-NG-100 |
Neurobasal Medium | Gibco | 21103 | |
B27 Supplement | Gibco | 17504 | |
antibiotics | Gibco | 15640 | |
d-PBS | Gibco | 14040 | |
insect needles | FST | 26002-20 | |
syringe needle | Braun | BD # 300013 | |
8 well chamber slide | Lab tek | 177402 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved