JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Revealing Dynamic Processes of Materials in Liquids Using Liquid Cell Transmission Electron Microscopy

Published: December 20th, 2012



1Materials Sciences Division, Lawrence Berkeley National Laboratory

We have developed a self-contained liquid cell, which allows imaging through liquids using a transmission electron microscope. Dynamic processes of nanoparticles in liquids can be revealed in real time with sub-nanometer resolution.

The recent development for in situ transmission electron microscopy, which allows imaging through liquids with high spatial resolution, has attracted significant interests across the research fields of materials science, physics, chemistry and biology. The key enabling technology is a liquid cell. We fabricate liquid cells with thin viewing windows through a sequential microfabrication process, including silicon nitride membrane deposition, photolithographic patterning, wafer etching, cell bonding, etc. A liquid cell with the dimensions of a regular TEM grid can fit in any standard TEM sample holder. About 100 nanoliters reaction solution is loaded into the reservoirs and about 30 picoliters liquid is drawn into the viewing windows by capillary force. Subsequently, the cell is sealed and loaded into a microscope for in situ imaging. Inside the TEM, the electron beam goes through the thin liquid layer sandwiched between two silicon nitride membranes. Dynamic processes of nanoparticles in liquids, such as nucleation and growth of nanocrystals, diffusion and assembly of nanoparticles, etc., have been imaged in real time with sub-nanometer resolution. We have also applied this method to other research areas, e.g., imaging proteins in water. Liquid cell TEM is poised to play a major role in revealing dynamic processes of materials in their working environments. It may also bring high impact in the study of biological processes in their native environment.

The study of chemical reactions in liquids in real time and imaging biological materials in their native environment have been of significant interests across the research fields1-5. Due to the high spatial resolution of transmission electron microscopy (TEM), imaging through liquids using TEM has attracted a lot of attention4,5. However, it has been a great challenge to image liquid samples using TEM, since the conventional microscope is operated in a high vacuum environment. In addition, liquid samples have to be thin enough to allow the electron beam to go through. Williamson et al.6 reported that imaging of electrochemical....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Microfabrication of Liquid Cells

  1. Prepare silicon wafers (p-doped, 100 μm in thickness and 4 inches in diameter) and clean the wafers using a standard wafer bath cleaning procedure.
  2. Deposit low-stress silicon nitride thin films (20 nm in thickness) on both sides of the silicon wafers by low-pressure chemical vapor deposition (LPCVD) method. A custom developed recipe is used for the deposition, which allows the growth of silicon-rich nitride (SiNx, x<4/3).
  3. Fabricate t.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

By using liquid cell TEM method, we have visualized the solution growth of Pt3Fe nanorods from nanoparticle building blocks. Figure 2 shows sequential images depicting the growth trajectory of a Pt3Fe nanorod in different solution conditions. False coloring process using Photoshop was employed to highlight the nanoparticles.

When the solvent mixture of pentadecane and oleylamine (7:3 vol/vol) was used, three distinct stages of growth can be identified (

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All fabrication processes have been done in the clean room, where semiconductor devices are made.

Before the deposition of indium, O2 plasma cleaning of the chips is necessary to eliminate the organic residue on the surface. Thus, a high quality indium spacer can be achieved, which can improve the bonding of top and bottom chips and the yield of leakage free liquid cells.

The silicon nitride viewing windows with ultrathin membrane of about 13 nm thick i.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Zheng thanks Prof. A. Paul Alivisatos and Dr. Ulrich Dahmen for helpful discussions during the early development of EM liquid cells. She is grateful to the support of DOE Office of Science Early Career Research Program.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Platinum(II) acetylacetonate Aldrich 523038
Iron(II) acetylacetonate Aldrich 413402
pentadecane Aldrich P3406
oleylamine Aldrich O7805
oleic acid Sigma O4137
Monochromated TEM FEI F20 UT Tecnai

  1. de Jonge, N., Ross, F. M. Electron microscopy of specimens in liquid. Nature Nanotechnology. 6, 695-704 (2011).
  2. Sun, Y. G. Watching nanoparticle kinetics in liquid. Mater. Today. 15, 140-147 (2012).
  3. Tao, F., Salmeron, M. In Situ Studies of Chemistry and Structure of Materials in Reactive Environments. Science. 331, 171-174 (2011).
  4. de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D. B., Drouin, D. Nanometerresolution electron microscopy through micrometers-thick water layers. Ultramicroscopy. 110, 1114-1119 (2010).
  5. Zheng, H., et al. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories. Science. 324, 1309-1312 (2009).
  6. Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R., Ross, F. M. Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nature Materials. 2, 532-536 (2003).
  7. Liao, H. -. G., Cui, L., Whitelam, S. Real-Time Imaging of Pt3Fe Nanorod Growth in Solution. Science. 336, 1011-1014 (2012).
  8. Mirsaidov, U. M., Zheng, H., Casana, Y., Matsudaira, P. Imaging Protein Structure in Water at 2.7 nm Resolution by Transmission Electron Microscopy. Biophysical Journal. 102, L15-L17 (2012).
  9. Yin, Y. D., et al. Formation of hollow nanocrystals through the nanoscale Kirkendall Effect. Science. 304, 711-714 (2004).
  10. Kan, S., Mokari, T., Rothenberg, E., Banin, U. Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nature Materials. 2, 155-158 (1038).
  11. Peng, X. G., et al. Shape control of CdSe nanocrystals. Nature. 404, 59-61 (2000).
  12. Skrabalak, S. E., et al. Gold Nanocages: Synthesis, Properties, and Applications. Accounts of Chemical Research. 41, 1587-1595 (2008).
  13. Zhang, Q. B., Xie, J. P., Yang, J. H., Lee, J. Y. Monodisperse Icosahedral Ag, Au, and Pd Nanoparticles: Size Control Strategy and Superlattice Formation. Acs Nano. 3, 139-148 (2009).
  14. Xin, H. L., Zheng, H. In Situ Observation of Oscillatory Growth of Bismuth Nanoparticles. Nano Letters. 12, 1470-1474 (2012).
  15. Murray, C. B. Watching Nanocrystals Grow. Science. 324, 1276-1277 (2009).
  16. Xin, H. L., et al. Revealing Correlation of Valence State with Nanoporous Structure in Cobalt Catalyst Nanoparticles by In Situ Environmental TEM. ACS Nano. 6, 4241-4247 (2012).
  17. Daulton, T. L., Little, B. J., Lowe, K., Jones-Meehan, J. In situ environmental celltransmission electron microscopy study of microbial reduction of chromium(VI) using electron energy loss spectroscopy. Microscopy and Microanalysis. 7, 470-485 (2001).
  18. Mohanty, N., Fahrenholtz, M., Nagaraja, A., Boyle, D., Berry, V. Impermeable Graphenic Encasement of Bacteria. Nano Letters. 11, 1270-1275 (2011).
  19. Yuk, J. M., et al. High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells. Science. 336, 61-64 (2012).
  20. Zheng, H., Claridge, S. A., Minor, A. M., Alivisatos, A. P., Dahmen, U. Nanocrystal Diffusion in a Liquid Thin Film Observed by in Situ Transmission Electron Microscopy. Nano Letters. 9, 2460-2465 (2009).
  21. Park, J., et al. Direct Observation of Nanoparticle Superlattice Formation by Using Liquid Cell Transmission Electron Microscopy. Acs Nano. 6, 2078-2085 (2012).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved