JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Microfluidic-based Electrotaxis for On-demand Quantitative Analysis of Caenorhabditis elegans' Locomotion

Published: May 2nd, 2013

DOI:

10.3791/50226

1Department of Biology, McMaster University , 2Department of Mechanical Engineering, McMaster University

A semi-automated micro-electro-fluidic method to induce on-demand locomotion in Caenorhabditis elegans is described. This method is based on the neurophysiologic phenomenon of worms responding to mild electric fields (“electrotaxis”) inside microfluidic channels. Microfluidic electrotaxis serves as a rapid, sensitive, low-cost, and scalable technique to screen for factors affecting neuronal health.

The nematode Caenorhabditis elegans is a versatile model organism for biomedical research because of its conservation of disease-related genes and pathways as well as its ease of cultivation. Several C. elegans disease models have been reported, including neurodegenerative disorders such as Parkinson's disease (PD), which involves the degeneration of dopaminergic (DA) neurons 1. Both transgenes and neurotoxic chemicals have been used to induce DA neurodegeneration and consequent movement defects in worms, allowing for investigations into the basis of neurodegeneration and screens for neuroprotective genes and compounds 2,3.

Screens in lower eukaryotes like C. elegans provide an efficient and economical means to identify compounds and genes affecting neuronal signaling. Conventional screens are typically performed manually and scored by visual inspection; consequently, they are time-consuming and prone to human errors. Additionally, most focus on cellular level analysis while ignoring locomotion, which is an especially important parameter for movement disorders.

We have developed a novel microfluidic screening system (Figure 1) that controls and quantifies C. elegans' locomotion using electric field stimuli inside microchannels. We have shown that a Direct Current (DC) field can robustly induce on-demand locomotion towards the cathode ("electrotaxis") 4. Reversing the field's polarity causes the worm to quickly reverse its direction as well. We have also shown that defects in dopaminergic and other sensory neurons alter the swimming response 5. Therefore, abnormalities in neuronal signaling can be determined using locomotion as a read-out. The movement response can be accurately quantified using a range of parameters such as swimming speed, body bending frequency and reversal time.

Our work has revealed that the electrotactic response varies with age. Specifically, young adults respond to a lower range of electric fields and move faster compared to larvae 4. These findings led us to design a new microfluidic device to passively sort worms by age and phenotype 6.

We have also tested the response of worms to pulsed DC and Alternating Current (AC) electric fields. Pulsed DC fields of various duty cycles effectively generated electrotaxis in both C. elegans and its cousin C. briggsae 7. In another experiment, symmetrical AC fields with frequencies ranging from 1 Hz to 3 KHz immobilized worms inside the channel 8.

Implementation of the electric field in a microfluidic environment enables rapid and automated execution of the electrotaxis assay. This approach promises to facilitate high-throughput genetic and chemical screens for factors affecting neuronal function and viability.

1. Photolithography for Master Mold Fabrication

  1. Bathe a 3 in. silicon wafer in acetone for 30 sec and then methanol for 30 sec. Rinse with dH20 water for 5 min.
  2. Dry the wafer's surface with a N2 blow gun. Heat the wafer on a hot plate at 140 °C for 2 min.
  3. Plasma oxidize the surface of the silicon wafer (1 min, 50 W).
  4. Spin-coat the wafer's surface with 3 ml SU-8 100 photoresist (40 sec; 1,750 rpm).
  5. Pre-bake the coated wafer on a hot plate at 65 °C for .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

A representative video of a wild-type young adult nematode's electrotaxis and its position and velocity outputs from the worm tracking software are shown in Supplementary Video 1 and Figure 3. The movement analysis software itself does not recognize the direction of field polarity and the time of polarity reversal; rather, this information must be obtained from the source video. This could be done using an audio or visual cue in the video or writing down experimental conditions and manip.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Taking advantage of the behavioural phenomenon first described by Gabel and colleagues and building on the dielectrophoretic manipulation work of Chuang and colleagues 11,12, our microfluidic-based electrotaxis assay provides an easy, robust and sensitive method to probe neuronal activity in worms using movement as an output. The analysis of movement parameters allows quantitative comparison between different genotypes. The precision of microchannel fabrication and electric field application together provide b.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs Program, Canadian Institutes of Health Research, and Ontario Ministry of Research and Innovation through their Early Researchers Award Program for financial support.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of the reagent Company Catalogue number Comments (optional)
Acetone CALEDON Labs 1200-1-30  
Methanol CALEDON Labs 6700-1-30  
Isopropanol CALEDON Labs 8600-1-40  
SU-8 Microchem Corp. Y131273 SU-8 100
SU-8 Developer Microchem Corp. Y020100  
92x16 mm Petri dish Sarstedt 82.1473.001  
Sylgard 184 Silicone Elastomer Kit Dow Corning   Contains elastomer base and curing agent
Function generator Tektronix Inc.   Model AFG3022B
Amplifier Trek Inc.   Model 2210-CE
Syringe pump Harvard Apparatus 70-4506 Model 11 ELITE
Hot plate Fisher Scientific 11675916Q Model HP131725Q

  1. Kuwahara, T., Koyama, A., et al. Familial Parkinson mutant α-synuclein causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J. Biol. Chem. 281 (1), 334-340 (2006).
  2. Kuwahara, T., Koyama, A., et al. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in a-synuclein transgenic. 17 (19), 2997-3009 (2008).
  3. Su, L. J., Auluck, P. K., et al. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. Dis. Model Mech. 3 (3-4), 194-208 (2010).
  4. Rezai, P., Siddiqui, A., Selvaganapathy, P. R., Gupta, B. P. Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab Chip. 10 (2), 220-226 (2010).
  5. Salam, S., Ansari, A., et al. A microfluidics set up to study neuronal degeneration and identification of neuroprotective compounds in C. elegans. , (2013).
  6. Rezai, P., Salam, S., Selvaganapathy, P. R., Gupta, B. P. Electrical sorting of Caenorhabditis elegans. Lab Chip. 12 (10), 1831-1840 (2012).
  7. Rezai, P., Salam, S., Selvaganapathy, P. R., Gupta, B. P. Effect of pulse direct current signals on electrotactic movement of nematodes Caenorhabditis elegans and Caenorhabditis briggsae. Biomicrofluidics. 5 (4), 044116 (2011).
  8. Rezai, P., Siddiqui, A., Selvaganapathy, P. R., Gupta, B. P. Behavior of Caenorhabditis elegans in alternating electric field and its application to their localization and control. Appl. Phys. Lett. 96 (15), 153702 (2010).
  9. van Ham, T. J., Thijssen, K. L., Breitling, R., Hofstra, R. M., Plasterk, R. H., Nollen, E. A. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet. 4, e1000027 (2008).
  10. Brenner, S. The genetics of Caenorhabditis elegans. Genetics. 77 (1), 71-94 (1974).
  11. Gabel, C. V., Gabel, H., Pavlichin, D., Kao, A., Clark, D. A., Samuel, A. D. Neural circuits mediate electrosensory behavior in Caenorhabditis elegans. J. Neurosci. 27 (28), 7586-7596 (2007).
  12. Chuang, H. -. S., Raizen, D. M., Lamb, A., Dabbish, N., Bau, H. H. Dielectrophoresis of Caenorhabditis elegans. Lab Chip. 11 (4), 599-604 (2011).
  13. Cronin, C. J., Mendel, J. E., Mukhtar, S., Kim, Y. -. M., Stirbl, R. C., Bruck, J., Sternberg, P. W. An automated system for measuring parameters of nematode sinusoidal movement. BMC Genet. 6, 5 (2005).
  14. Manière, X., Lebois, F., Matic, I., Ladoux, B., Meglio, J. -. M. D. i., Hersen, P. Running worms: C. elegans self-sorting by electrotaxis. PLoS One. 6 (2), e16637 (2011).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved