A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution.
Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.1,2 In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young's modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC61BM system correspond well with literature data. The P3HT:PC61BM blend separates onto PC61BM-rich and P3HT-rich domains. Mechanical properties of PC61BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film.
Recent breakthroughs in power conversion efficiency (PCE) of organic photovoltaic (OPV) cells (pushing 10% at the cell level)3 in concert with compliance with high-throughput and low-cost manufacturing processes4 have brought a spotlight onto OPV technology as a possible solution for the challenge of inexpensive manufacturing of large-area solar cells. OPV materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials and performance of photovoltaic devices are intimately connected. Thus, understanding inhomogeneity in composition as well as electrical properties of OPV materials is of paramount importance for moving OPV technology forward. Atomic force microscopy (AFM) has been developed as a tool for high-resolution measurements of surface topography since 1986.5 Nowadays, techniques for materials properties (Young's modulus,6-10 work function,11 conductivity,12 electromechanics,13-15 etc.) measurements are attracting increasing attention. In the case of OPV materials, correlation of local phase composition and electrical properties holds promise for revealing better understanding of the inner workings of organic solar cells.1, 16-17 AFM-based techniques are capable of high-resolution phase attribution8 as well as electrical properties mapping in polymeric materials. Thus, in principle, correlation of polymer phase composition (through mechanical measurements)18 and electrical properties is possible using AFM-based techniques. Many AFM-based techniques for measurements of mechanical and electrical properties of materials use the assumption of constant area of contact between the AFM probe and the surface. This assumption often fails, which results in strong correlation among surface topography and mechanical/electrical properties. Recently, a new AFM-based technique for high-throughput measurements of mechanical properties (PeakForce)19 was introduced. PeakForce TUNA (variation of the PeakForce method) provides a platform for concurrent measurements of mechanical and electrical properties of the sample. However, the PeakForce TUNA method produces mechanical and electrical property maps, which usually are strongly correlated because of unaccounted variability of contact during measurements. In this paper, we present an experimental protocol for removing correlations associated with varying contact radius while maintaining accurate measurements of the mechanical and electrical properties using AFM. Implementation of the protocol results in quantitative measurements of materials' resistance and Young's Modulus.
1. Signal Acquisition
2. Data Analysis Step 1: Generation of Pull-off Force, Contact Stiffness, and Current Maps
3. Data Analysis Step 2: Elimination of Contact-area Artifacts
Young's modulus and resistivity maps (Figure 3) present typical results of the measurements described above. Mechanical and electrical properties of the ITO/PEDOT:PSS/P3HT:PC61BM stack were measured at negative (-10 V) and positive (+6 V) voltages applied to the AFM probe. Imaging artifacts, associated with electrostatic interaction between the AFM probe and the sample, are a common problem for quantitative measurements of functional properties using AFM. The similarity of Young's modul...
No conflicts of interest declared.
MPN is grateful to the Director's Fellowship Program for financial support. MPN wants to thank Yu-Chih Tseng for help with development of the protocol for solar cell processing. This work was performed at the Center for Nanoscale Materials, a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357.
Name | Company | Catalog Number | Comments |
Plextronics inks | Plexcore | PV 1000 | |
ITO-coated glass substrates | Delta Technologies, Inc | 25 Ohms/sq | |
30 MHz synthesized function generator | Stanfor Research Systems | DS345 | |
Current amplifier | Femto | DLPCA-200 | |
Multimode AFM | Veeco, Santa Barbara, CA | equipped with Nanoscope-V controller | |
DAQ card | National Instruments | NI-PCI-6115 | |
Metal Pt probes | RMNano | 12Pt3008 | |
MATLAB software | Mathworks | ||
LabView software | National Instruments |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved