JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

Cell Co-culture Patterning Using Aqueous Two-phase Systems

Published: March 26th, 2013

DOI:

10.3791/50304

1Department of Biomedical Engineering, University of Michigan , 2Department of Macromolecular Science and Engineering, University of Michigan

Aqueous two-phase systems were used to simultaneously pattern multiple populations of cells. This fast and easy method for cell patterning takes advantage of the phase separation of aqueous solutions of dextran and polyethylene glycol and the interfacial tension that exists between the two polymer solutions.

Cell patterning technologies that are fast, easy to use and affordable will be required for the future development of high throughput cell assays, platforms for studying cell-cell interactions and tissue engineered systems. This detailed protocol describes a method for generating co-cultures of cells using biocompatible solutions of dextran (DEX) and polyethylene glycol (PEG) that phase-separate when combined above threshold concentrations. Cells can be patterned in a variety of configurations using this method. Cell exclusion patterning can be performed by printing droplets of DEX on a substrate and covering them with a solution of PEG containing cells. The interfacial tension formed between the two polymer solutions causes cells to fall around the outside of the DEX droplet and form a circular clearing that can be used for migration assays. Cell islands can be patterned by dispensing a cell-rich DEX phase into a PEG solution or by covering the DEX droplet with a solution of PEG. Co-cultures can be formed directly by combining cell exclusion with DEX island patterning. These methods are compatible with a variety of liquid handling approaches, including manual micropipetting, and can be used with virtually any adherent cell type.

Aqueous two-phase systems (ATPSs) form when solutions of two incompatible polymers are mixed together at high enough concentrations. Phase separation is influenced by a variety of factors that include the molecular weight and polarity of the polymers, temperature of the solutions, pH and ionic content of the aqueous solvent 1, 2. The point at which the two polymer solutions separate is determined by the physiochemical properties of the chosen phase system, but generally occurs at low polymer concentrations (less than 20% wt/wt) under non-denaturing conditions, allowing ATPSs to be used for biotechnology applications 3-9.

.css-f1q1l5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;background-image:linear-gradient(180deg, rgba(255, 255, 255, 0) 0%, rgba(255, 255, 255, 0.8) 40%, rgba(255, 255, 255, 1) 100%);width:100%;height:100%;position:absolute;bottom:0px;left:0px;font-size:var(--chakra-fontSizes-lg);color:#676B82;}

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Phase System Characterization: Determining Thresholds for Phase Separation

  1. Prepare solutions containing PEG and DEX in the desired buffer or cell culture medium as shown in Figure 1 (purple dots) in 15 ml or 50 ml conical tubes. Hereafter, PEG and DEX will refer to 35 kDa PEG and 500 kDa DEX; however, critical concentrations will change depending on the two polymers used. Record the mass of PEG and DEX in each solution. High-concentration polymer solutions may take several hours to dissolv.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

To select an appropriate combination of PEG and DEX for cell patterning it is important to determine the binodal curve. This curve delineates the points at which an ATPS can form and can vary for a given set of polymers based on temperature, pH and ionic content. For culturing cells that require customized medium formulations it may be necessary to experimentally determine the binodal curve. This is accomplished by generating a series of ATPSs that are far from the binodal and varying in their PEG and DEX contents.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The ATPS cell micropatterning method requires very little expertise beyond proficiency in cell culture techniques and can be quickly mastered. The advantages of this approach are that it is inexpensive, rapid and compatible with a variety of cell types and culture formats. For these reasons, our protocol should be easily adopted by life scientists, particularly those who study cell proliferation, migration and chemotaxis, and the influence of juxtacrine and paracrine interactions among cell populations. The assays.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the Coulter Foundation, Beyster Foundation, the Undergraduate Research Opportunity (UROP) summer program for ATA and a National Science Foundation Graduate Student Research Fellowship (Grant no. DGE 0718128; ID: 2010101926) for JBW.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Reagent Manufacturer
Dextran 500,000 kDa Pharmacosmos, Denmark
Polyethylene Glycol 35,000 kDa Sigma-Aldrich, St. Louis, MO
Hela ATCC, Manassas, VA
HepG2 C3A ATCC, Manassas, VA
NIH 3T3 ATCC, Manassas, VA
Cell Tracker Invitrogen, Carlsbad, CA
DMEM Gibco, Carlsbad, CA
RPMI Gibco, Carlsbad, CA
F12 Gibco, Carlsbad, CA
Fetal Bovine Serum Gibco, Carlsbad, CA

  1. Hatti-Kaul, R. Aqueous two-phase systems : methods and protocols. Methods in biotechnology. xiii, 440 (2000).
  2. Albertsson, P. A. k. . Partition of cell particles and macromolecules: separation and purification of biomolecules, cell organelles, membranes, and cells in aqueous polymer two-phase systems and their use in biochemical analysis and biotechnology. , 346 (1986).
  3. Yamada, M., et al. Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Biotechnol. Bioeng. 88 (4), 489-494 (2004).
  4. Soohoo, J. R., Walker, G. M. Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed. Microdevices. 11 (2), 323-329 (2009).
  5. Hahn, T., Hardt, S. Concentration and size separation of DNA samples at liquid-liquid interfaces. Anal. Chem. 83 (14), 5476-5479 (2011).
  6. Hatti-Kaul, R. Aqueous two-phase systems. A general overview. Mol. Biotechnol. 19 (3), 269-277 (2001).
  7. Hustedt, H., Kroner, K. H., Menge, U., Kula, M. -. R. Protein recovery using two-phase systems. Trends in Biotechnology. 3 (6), 139-144 (1985).
  8. Keating, C. D. Aqueous Phase Separation as a Possible Route to Compartmentalization of Biological Molecules. Acc Chem. Res. 45 (12), 2114-2124 (2012).
  9. Helfrich, M. R., et al. Partitioning and assembly of metal particles and their bioconjugates in aqueous two-phase systems. Langmuir. 21 (18), 8478-8486 (2005).
  10. Diamond, A. D., Hsu, J. T. Prote. Partitioning in PEG/Dextran Aqueous Two-Phase Systems. AIChE Journal. 36 (7), 1017-1024 (1990).
  11. Y-T, Z. -. Q., Zhu, Modeling of interfacial tension of aqueous two-phase systems. Chemical Engineering Science. 54 (4), 433-440 (1999).
  12. Liu, Y., Lipowsky, R., Dimova, R. Concentration dependence of the interfacial tension for aqueous two-phase polymer solutions of dextran and polyethylene glycol. Langmuir. 28 (8), 3831-3839 (2012).
  13. Rha, C. Interfacial Tension of Polyethylene Glycol/Potassium Phosphate Aqueous Two-Phase Systems. Physics and Chemistry of Liquids: An International Journal. 38 (1), 25-34 (2000).
  14. Fang, Y., et al. Rapid Generation of Multiplexed Cell Cocultures Using Acoustic Droplet Ejection Followed by Aqueous Two-Phase Exclusion Patterning. Tissue Eng. Part C. Methods. 18 (9), 647-657 (2012).
  15. Tavana, H., et al. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 8 (9), 736-741 (2009).
  16. Tavana, H., Mosadegh, B., Takayama, S. Polymeric aqueous biphasic systems for non-contact cell printing on cells: engineering heterocellular embryonic stem cell niches. Adv. Mater. 22 (24), 2628-2631 (2010).
  17. Tavana, H., et al. Microprinted feeder cells guide embryonic stem cell fate. Biotechnol. Bioeng. , (2011).
  18. Tavana, H., Takayama, S. Aqueous biphasic microprinting approach to tissue engineering. Biomicrofluidics. 5 (1), 13404 (2011).
  19. Frampton, J. P., et al. Precisely targeted delivery of cells and biomolecules within microchannels using aqueous two-phase systems. Biomed. Microdevices. 13 (6), 1043-1051 (2011).
  20. Hossein Tavana, K. K., Bersano-Begey, T., Luker, K. E., Luker, G. D., Takayama, S. Rehydration of Polymeric, Aqueous, Biphasic System Facilitates High Throughput Cell Exclusion Patterning for Cell Migration Studies. Advanced Functional Materials. 21 (15), 2920-2926 (2011).
  21. Falconnet, D., et al. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 27 (16), 3044-3063 (2006).
  22. Lim, J. Y., Donahue, H. J. Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 13 (8), 1879-1891 (2007).
  23. Ringeisen, B. R., et al. Jet-based methods to print living cells. Biotechnol. J. 1 (9), 930-948 (2006).
  24. Wright, D., et al. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils. Lab Chip. 7 (10), 1272-1279 (2007).
  25. Takayama, S., et al. Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proc. Natl. Acad. Sci. U.S.A. 96 (10), 5545-5548 (1999).
  26. Berthier, E., et al. Pipette-friendly laminar flow patterning for cell-based assays. Lab Chip. 11 (12), 2060-2065 (2011).
  27. Davidson, R. L., O'Malley, K. A., Wheeler, T. B. Polyethylene glycol-induced mammalian cell hybridization: effect of polyethylene glycol molecular weight and concentration. Somatic Cell Genet. 2 (3), 271-280 (1976).
  28. Johnson, D. M., LaFranzo, N. A., Maurer, J. A. Creating Two-Dimensional Patterned Substrates for Protein and Cell Confinement. J. Vis. Exp. (55), e3164 (2011).
  29. Moon, S., Lin, P., Keles, H. O., Yoo, S., Demirci, U. Title Cell Encapsulation by Droplets. J. Vis. Exp. (8), e316 (2007).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved