JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The high-pressure and high-temperature experiments described here mimic planet interior differentiation processes. The processes are visualized and better understood by high-resolution 3D imaging and quantitative chemical analysis.

Abstract

A planetary interior is under high-pressure and high-temperature conditions and it has a layered structure. There are two important processes that led to that layered structure, (1) percolation of liquid metal in a solid silicate matrix by planet differentiation, and (2) inner core crystallization by subsequent planet cooling. We conduct high-pressure and high-temperature experiments to simulate both processes in the laboratory. Formation of percolative planetary core depends on the efficiency of melt percolation, which is controlled by the dihedral (wetting) angle. The percolation simulation includes heating the sample at high pressure to a target temperature at which iron-sulfur alloy is molten while the silicate remains solid, and then determining the true dihedral angle to evaluate the style of liquid migration in a crystalline matrix by 3D visualization. The 3D volume rendering is achieved by slicing the recovered sample with a focused ion beam (FIB) and taking SEM image of each slice with a FIB/SEM crossbeam instrument. The second set of experiments is designed to understand the inner core crystallization and element distribution between the liquid outer core and solid inner core by determining the melting temperature and element partitioning at high pressure. The melting experiments are conducted in the multi-anvil apparatus up to 27 GPa and extended to higher pressure in the diamond-anvil cell with laser-heating. We have developed techniques to recover small heated samples by precision FIB milling and obtain high-resolution images of the laser-heated spot that show melting texture at high pressure. By analyzing the chemical compositions of the coexisting liquid and solid phases, we precisely determine the liquidus curve, providing necessary data to understand the inner core crystallization process.

Introduction

Terrestrial planets such as the Earth, Venus, Mars, and Mercury are differentiated planetary bodies consisting of a silicate mantle and a metallic core. The modern planet formation model suggests that the terrestrial planets were formed from collisions of Moon-to-Mars-sized planetary embryos grown from km-sized or larger planetesimals through gravitational interactions1-2. The planetesimals were likely differentiated already once the metallic iron alloys reached melting temperature due to heating from sources such as radioactive decay of short-lived isotopes such as 26Al and 60Fe, impact, and release of potential energy3. It is important to understand how the liquid metal percolated through a silicate matrix during the early differentiation.

Planet differentiation could proceed through efficient liquid-liquid separation or by percolation of liquid metal in a solid silicate matrix, depending on the size and interior temperature of the planetary bodies. The percolation of liquid metal in the solid silicate matrix is likely a dominant process in the initial differentiation when the temperature is not high enough to melt the entire planetary body. The efficiency of percolation depends on the dihedral angle, determined by the interfacial energies of the solid-solid and solid-liquid interfaces. We can simulate this process in the laboratory by conducting high-pressure and high-temperature experiments on a mixture of iron alloy and silicate. Recent studies4-7 have investigated the wetting ability of liquid iron alloys in a solid silicate matrix at high pressure and temperature. They used a conventional method to measure the relative frequency distributions of apparent dihedral angles between the quenched liquid metal and silicate grains on the polished cross-sections for determination of the true dihedral angle. The conventional method yields relatively large uncertainties in the measured dihedral angle and possible bias depending on the sampling statistics. Here we present a new imaging technique to visualize the distribution of liquid metal in the silicate matrix in three dimensions (3D) by combination of FIB milling and high-resolution field-emission SEM imaging. The new imaging technique provides precise determination of the dihedral angle and quantitative measure of the volume fraction and connectivity of the liquid phase.

The Earth's core was formed in a relatively short time (<100 million years)8, presumably in a liquid state at its early history. Mars and Mercury also have liquid cores based on solar tidal deformation from the Mars Global Surveyor radio tracking dataand radar speckle patterns tied to the planetary rotation10, respectively. Thermal evolution models and high-pressure melting experiments on core materials further support a liquid Martian core11-12. Recent Messenger spacecraft data provide additional evidence for a liquid core of Mercury13. Even the small Moon likely has a small liquid core based on recent reanalysis of Appollo lunar seismograms14. Liquid planetary cores are consistent with high accretion energy at the early stage of planet formation. Subsequent cooling may lead to formation of solid inner core for some planets. Seismic data have revealed that the Earth consists of a liquid outer core and a solid inner core. The formation of the inner core has important implications for the dynamics of the core driven by thermal and compositional convections and the generation of the magnetic field of the planet.

Solidification of the inner core is controlled by the melting temperature of core materials and the thermal evolution of the core. Core formation of terrestrial planets shared similar accretion paths and the chemical composition of the cores is considered to be dominated by iron with about 10 weight % light elements such as sulfur (S), silicon (Si), oxygen (O), carbon (C), and hydrogen (H)15. It is essential to have knowledge of the melting relations in the systems relevant to the core, such as Fe-FeS, Fe-C, Fe-FeO, Fe-FeH, and Fe-FeSiat high pressure, in order to understand the composition of the planetary cores. In this study, we will demonstrate experiments conducted in the multi-anvil device and diamond-anvil cell, mimicking the conditions of the planetary cores. The experiments provide information on the crystallization sequence and element partitioning between solid and liquid metal, leading to a better understanding for the requirements of the inner core crystallization and the distribution of light elements between the crystalline inner core and liquid out core. To extend the melting relationships to very high pressures, we have developed new techniques to analyze the quenched samples recovered from laser-heated diamond-anvil cell experiments. With precision FIB milling of the laser-heating spot, we determine melting using quenching texture criteria imaged with high-resolution SEM and quantitative chemical analysis with a silicon drift detector at submicron spatial resolution.

Here we outline two sets of experiments to mimic planetary core formation by percolation of metallic melt in silicate matrix during early accretion and inner core crystallization by subsequent cooling. The simulation is aimed to understand the two important processes during the evolution of planetary core.

Protocol

1. Prepare Starting Materials and Sample Chambers

  1. Prepare two types of starting materials, (1) a mixture of natural silicate olivine and metallic iron powder with 10 wt% sulfur (metal/silicate ratios ranging from 4 to 30 wt%) for simulating percolation of liquid iron alloy in a solid silicate matrix during the initial core formation of a small planetary body, and (2) a homogeneous mixture of finely-grounded pure iron and iron sulfide for determining the planetary inner core crystallization.
  2. Grind the starting materials to fine mixed powder under ethanol in an agate mortar for one hour and dried at 100 °C.
  3. Load the starting material into a sintered MgO or Al2O3 capsule (typically 1.5 mm in diameter and 1.5 in length), and then place it in a high-pressure cell assembly for the multi-anvil experiments.
  4. Load the Fe-FeS mixture into a small sample chamber (typically 100 µm in diameter and 25 µm in thickness) drilled in a preindented rhenium gasket for the laser-heating experiments in the diamond-anvil cell. Sandwich the Fe-FeS mixture between NaCl layers which serve as thermal insulators.

2. High-pressure and High-temperature Experiments in the Multi-anvil Apparatus

  1. The multi-anvil high-pressure cell assembly consists of an MgO octahedron as a pressure medium, a ZrO2 sleeve as the thermal insulator, and a cylindrical rhenium or graphite heater. The sample capsule fits inside the heater. A type-C thermocouple is inserted into the sample chamber to determine the sample temperature.
  2. Place the high-pressure assembly in a multi-anvil high-pressure apparatus for pressurization.
  3. The multi-anvil apparatus consists of a 1,500 ton hydraulic press and a pressure module which contains a retaining ring with six removable push wedges forming a cubic cavity in the center15. The cubic cavity houses eight tungsten carbide cubes with truncated corners. The truncated cubes, which converge on the octahedron cell assembly, are separated from one another by compressible gaskets. The hydraulic ram transmits the force effectively onto the sample assembly by a two-stage anvil configuration. Figure 1 illustrates the experimental procedure for the multi-anvil experiment.
  4. Pressurize the sample to a target pressure between 2-27 GPa at room temperature based on fix-point pressure calibration curve16, and then heat it to the experimental temperatures up to 2,300 °C by electrical resistance heating; maintain the experiment at a constant temperature for the duration of the experiment; and turn off the power to quench the sample to room temperature at the end of the experiment.
  5. Release pressure slowly by opening the hydraulic oil valve and recover the experimental charge.

3. Laser-heating Experiments in the Diamond-anvil Cell

  1. Pressure in a diamond-anvil cell is generated between two gem-quality single-crystal diamond anvils (about 0.25 carats each). We use a symmetric diamond-anvil cell to drive the perfectly aligned opposite anvils with a piston-cylinder system. The cell is capable of generating pressures corresponding to the pressure conditions of the Earth's core17. High temperature is achieved by laser heating in the diamond-anvil cell. We use a system at the Advance Photon Source (APS), which is based on a double-sided laser heating technique and consists of two fiber lasers, optics to heat the sample from both sides, and two spectroradiometric systems for temperature measurements on both sides18. The system is designed to generate a large heating spot (25 µm in diameter), minimize the sample temperature gradients both radially and axially in the diamond anvil cell, and maximize heating stability. Figure 2 shows schematics of the experimental configuration for the laser-heating experiment in the diamond-anvil cell with an image of the laser-heating spot.
  2. Align the diamond anvils with 300 µm culets and preindent a rhenium gasket to a thickness of 30 µm from an initial thickness of 250 µm.
  3. Drill a hole in the preindented gasket with a diameter of 120 µm at the center, and load the sample in the hole.
  4. Pressurize the sample to a target pressure at room temperature, and then heat the sample by increasing the laser power while taking temperature measurements and in situ X-ray diffraction measurements at the synchrotron facility.
  5. Turn off the laser power to quench the sample when partial melting is detected by a change in thermal radiation and from the diffraction pattern.
  6. Recover the heated sample for ex situ characterization.

4. Sample Recovery and Analysis

  1. Mount the retrieved multi-anvil sample in epoxy resin and polish its surface using a suite of diamond powder grit from 150 μm to 0.25 μm.
  2. Carbon-coat the surface of the sample and load it into the sample chamber of a Zeiss Auriga FIB/SEM crossbeam instrument (Figure 3A) for analysis.
  3. Align the sample to the coincident point of the FIB and SEM at a working distance of 5 mm (Figure 3B), and then premill the sample to expose a volume of 15 x 20 x 20 µm3 (Figure 3C).
  4. Take SEM images at an interval of 25 nm using the slice&view function on the Zeiss Auriga FIB/SEM instrument (automatically record a series of images after ion-beam milling with typical image resolution of about 35 nm).
  5. Input the image data files to a visualization software and reconstruct 3D images to visualize the melt distribution and connectivity in the quenched sample (Figure 3D).

Results

We have conducted a series of experiments using mixtures of San Carlos olivine and Fe-FeS metal alloy with different metal-silicate ratios, as the starting materials. The S content of the metal is 10 weight % S. Here we show some representative results from high-pressure experiments performed at 6 GPa and 1,800 °C, using well-calibrated multi-anvil assemblies15. Under the experimental conditions, the Fe-FeS metal alloy is completely molten and the silicate (San Carlos olivine) remains crystalline. The pur...

Discussion

The techniques for the multi-anvil experiments are well established, generating stable pressure and temperature for an extended period of run time and producing relatively large sample volume. It is a powerful tool to simulate the interior processes of planets, especially for experiments, such as melt percolation, that require certain sample volume. The limitation is the maximum achievable pressure, up to 27 GPa with tungsten carbide (WC) anvils, reaching the core pressures of Mars and Mercury, but far too low pressure t...

Disclosures

No conflict of interest declared.

Acknowledgements

This work was supported by NASA grant NNX11AC68G and the Carnegie Institution of Washington. I thank Chi Zhang for his assistance with data collection. I also thank Anat Shahar and Valerie Hillgren for helpful reviews of this manuscript.

Materials

NameCompanyCatalog NumberComments
Multi-anvil apparatusGeophysical LabHome Builder
Diamond-anvil cellGeophysical LabHome Builder
Laser-heating systemAPS GSECARSDesigned by beamline staff Public beamline
FIB/SEM CrossbeamCarl Zeiss Ltd.Auriga
Avizo 3D softwareVSGFire for materials science

References

  1. Wetherill, G. W. Formation of the terrestrial planets. Annual Review of Astronomy and Astrophysics. 18, 77-113 (1980).
  2. Chambers, J. E. Planetary accretion in the inner Solar System. Earth and Planetary Science Letters. 223, 241-252 (2004).
  3. Greenwood, R. C., Franchi, I. A., Jambon, A., Buchanan, P. C. Widespread magma oceans on asteroidal bodies in the early Solar System. Nature. 435, 916-918 (2005).
  4. Mann, U., Frost, D. J., Rubie, D. C. The wetting ability of Si-bearing liquid Fe-alloys in a solid silicate matrix-percolation during core formation under reducing conditions. Physics of the Earth and Planetary Interiors. 167 (1-2), 1-7 (2008).
  5. Terasaki, H., Frost, D. J., Rubie, D. C., &Langenhorst, F. Percolative core formation in planetesimals. Earth and Planetary Science Letters. 273, 132-137 (2008).
  6. Walte, N. P., Becker, J. K., Bons, P. D., Rubie, D. C., Frost, D. J. Liquid-distribution and attainment of textural equilibrium in a partially-molten crystalline system with a high-dihedral-angle liquid phase. Earth and Planetary Science Letters. 262, 517-532 (2007).
  7. Terasaki, H., Frost, D. J., Rubie, D. C., Langenhorst, F. Interconnectivity of Fe-O-S liquid in polycrystalline silicate perovskite at lower mantle conditions. Physics of Earth and Planetary Interiors. 161, 170-176 (2007).
  8. Halliday, A. N., Wood, B. J. How did Earth accrete?. Science. 325, 44-45 (2009).
  9. Yoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M., Folkner, W. M. Fluid core size of Mars from detection of the solar tide. Science. 300, 299-303 (2003).
  10. Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A., Holin, I. V. Large longitude libration of Mercury reveals a molten core. Science. 316, 710-714 (2007).
  11. Fei, Y., Bertka, C. M. The interior of Mars. Science. 308, 1120-1121 (2005).
  12. Williams, J. -. P., Nimmo, F. Thermal evolution of the Martian core: Implications for an early dynamo. Geology. 32, 97-100 (2004).
  13. Smith, D. E., Zuber, M. T., et al. Gravity field and internal structure of Mercury from MESSENGER. Science. 336, 214-217 (2012).
  14. Weber, R. C., Lin, P. -. Y., Garnero, E. J., Williams, Q., Lognonné, P. Seismic detection of the Lunar core. Science. 331, 309-312 (2011).
  15. Li, J., Fei, Y., Carlson, R. W. Experimental constraints on core composition. Geochemistry of the Mantle and Core. , 521-546 (2007).
  16. Bertka, C. M., Fei, Y. Mineralogy of the Martian interior up to core-mantle boundary pressures. Journal of Geophysical Research. 102, 5251-5264 (1997).
  17. Tateno, S., Hirose, K., Ohishi, Y., Tatsumi, Y. The structure of iron in Earth's inner core. Science. 330, 359-361 (2010).
  18. Prakapenka, V. B., Kubo, A., et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research. 28, 225-235 (2008).
  19. Minarik, W. G., Ryerson, F. J., Watson, E. B. Textural entrapment of core-forming melts. Science. 272, 530-533 (1996).
  20. Terasaki, H., Frost, D. J., Rubie, D. C., Langenhorst, F. The effect of oxygen and sulphur on the dihedral angle between Fe-O-S melt and silicate minerals at high pressure: Implications for Martian core formation. Earth and Planetary Science Letters. 232, 379-392 (2005).
  21. Fei, Y., Bertka, C. M., Finger, L. W. High-pressure iron-sulfur compound, Fe3S2, and melting relations in the system Fe-FeS at high pressure. Science. 275, 1621-1623 (1997).
  22. Fei, Y., Li, J., Bertka, C. M., Prewitt, C. T. Structure type and bulk modulus of Fe3S, a new iron-sulfur compound. American Mineralogist. 85, 1830-1833 (2000).
  23. Li, J., Fei, Y., Mao, H. K., Hirose, K., Shieh, S. Sulfur in the Earth's inner core. Earth and Planetary Science Letters. 193, 509-514 (2001).
  24. Chen, B., Li, J., Hauck, S. A. Non-ideal liquidus curve in the Fe-S system and Mercury's snowing core. Geophysical Research Letter. 35, L07201 (2008).
  25. Buono, A. S., Walker, D. The Fe-rich liquidus in the Fe-FeS system from 1 bar to 10 GPa. GeochimicaCosmochimicaActa. 75, 2072-2087 (2011).
  26. Ito, E., Yamazaki, D., et al. Pressure generation and investigation of the post-perovskite transformation in MgGeO3by squeezing the Kawai-cell equipped with sintered diamond anvils. Earth and Planetary Science Letters. 293 (1-2), 84-89 (2010).
  27. Roberts, J. J., Kinney, J. H., Siebert, J., Ryerson, F. J. Fe-Ni-S melt permeability in olivine: implications for planetary core formation. Geophysical Research Letter. 34, L14306 (2007).
  28. Wang, Y., Lesher, C., Fiquet, G., Rivers, M., Nishiyama, N., Siebert, J., Roberts, J., Morard, G., Gaudio, S., Clark, A., Watson, H., Menguy, N., Guyot, F. In-situ high P, T X-ray microtomographic imaging during large deformation: a newtechnique for studying mechanical behavior of multi-phase composites. Geosphere. 7, 40-45 (2011).
  29. Watson, H. C., Roberts, J. J. Connectivity of core forming melts: Experimental constraints from electrical conductivity and X-ray tomography. Physics of Earth and Planetary Interiors. 186, 172-182 (2011).
  30. Fei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., Prakapenka, V. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. U.S.A. 104, 9182-9186 (2007).

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Planetary InteriorHigh pressureHigh temperatureDifferentiationPercolationCore FormationInner Core CrystallizationDihedral AngleMelt MigrationFocused Ion BeamSEMMulti anvilDiamond anvil CellLaser heatingMeltingPartitioning

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved