A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Neural-machine interfaces (NMI) have been developed to identify the user's locomotion mode. These NMIs are potentially useful for neural control of powered artificial legs, but have not been fully demonstrated. This paper presented (1) our designed engineering platform for easy implementation and development of neural control for powered lower limb prostheses and (2) an experimental setup and protocol in a laboratory environment to evaluate neurally-controlled artificial legs on patients with lower limb amputations safely and efficiently.
To enable intuitive operation of powered artificial legs, an interface between user and prosthesis that can recognize the user's movement intent is desired. A novel neural-machine interface (NMI) based on neuromuscular-mechanical fusion developed in our previous study has demonstrated a great potential to accurately identify the intended movement of transfemoral amputees. However, this interface has not yet been integrated with a powered prosthetic leg for true neural control. This study aimed to report (1) a flexible platform to implement and optimize neural control of powered lower limb prosthesis and (2) an experimental setup and protocol to evaluate neural prosthesis control on patients with lower limb amputations. First a platform based on a PC and a visual programming environment were developed to implement the prosthesis control algorithms, including NMI training algorithm, NMI online testing algorithm, and intrinsic control algorithm. To demonstrate the function of this platform, in this study the NMI based on neuromuscular-mechanical fusion was hierarchically integrated with intrinsic control of a prototypical transfemoral prosthesis. One patient with a unilateral transfemoral amputation was recruited to evaluate our implemented neural controller when performing activities, such as standing, level-ground walking, ramp ascent, and ramp descent continuously in the laboratory. A novel experimental setup and protocol were developed in order to test the new prosthesis control safely and efficiently. The presented proof-of-concept platform and experimental setup and protocol could aid the future development and application of neurally-controlled powered artificial legs.
Powered lower limb prostheses have gained increasing attention in both commercial market1,2 and research community3-5. Compared to traditional passive prosthetic legs, motorized prosthetic joints have the advantage of allowing lower limb amputees to more efficiently perform activities that are difficult or impossible when wearing passive devices. However, currently, smooth and seamless activity transition (e.g., from level-ground walking to stair ascent) is still a challenging issue for powered prosthetic leg users. This difficulty is mainly due to the lack of a user-machine interface that can “read” the user’s movement intent and promptly adjust prosthesis control parameters in order to enable the users to seamlessly switch the activity mode.
To address these challenges, various approaches in designing user-machine interface have been explored. Wherein NMI based on electromyographic (EMG) signals has demonstrated a great potential to allow intuitive control of powered lower limb prostheses. Two recent studies6,7 reported decoding the intended motion of the missing knee of transfemoral amputees by monitoring the EMG signals recorded from residual muscles during a seated position. Au et al.5 used EMG signals measured from residual shank muscles to identify two locomotion modes (level-ground walking and stair descent) of one transtibial amputee. Huang et al.8 proposed a phase-dependent EMG pattern recognition approach that can recognize seven activity modes with approximately 90% accuracy as demonstrated on two transfemoral amputees. To better improve the intent-recognition performance, a NMI based on neuromuscular-mechanical fusion was designed in our group9 and online evaluated on transfemoral amputees wearing passive prosthetic legs for intent recognition10,11. This NMI can accurately identify the user’s intended activities and predict the activity transitions9, which was potentially useful for neural control of powered artificial legs.
The current question facing us is how to integrate our NMI into the prosthesis control system in order to enable intuitive prosthesis operation and ensure the user’s safety. Developing true neurally-controlled artificial legs requires a flexible platform in the laboratory for easy implementation and optimization of prosthesis control algorithms. Therefore, the objective of this study is to report a flexible engineering platform developed in our lab for testing and optimizing the prosthesis control algorithms. In addition, new experimental setup and protocol are presented for evaluating the neurally-controlled powered transfemoral prostheses on patients with lower limb amputations safely and efficiently. The platform and experimental design presented in this study could benefit the future development of true neurally-controlled, powered artificial legs.
1. Platform for Implementation of Neural Control of Powered Transfemoral Prostheses
An engineering platform was developed in this study to implement and evaluate neural control of powered artificial legs. The hardware included a desktop PC with 2.8 GHz CPU and 4 GB RAM, a multi-functional data acquisition board with both analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), a motor controller, digital I/Os, and a prototypical powered transfemoral prosthesis designed in our group12. The analog sensor inputs were first digitized by the ADCs and streamed into the desktop PC for signal processing. The DAC was used for control output to drive the DC motor in prosthesis through a motor controller. Digital I/Os were used to enable/disable the motor controller. The powered prosthesis was tethered to the desktop PC and powered by a 24 V power supply.
The software was programmed in a development environment suitable for virtual instrumentation running on the desktop PC. The development environment was based on virtual instrumentation, which effectively combines both user-defined software and hardware to implement the customized platform. By using the structure of a graphical block diagram, different modular function nodes can be easily and efficiently implemented and updated. In order to demonstrate the function of platform for online control of powered artificial legs, preliminarily designed prosthesis control was implemented on this platform. The control system included a neural controller and an intrinsic controller. The neural controller consisted of our previous designed NMI based on neuromuscular-mechanical fusion, which recognized the user’s activity mode. The neural controller as a high-level controller was hierarchically connected with the intrinsic control for powered lower limb prosthesis control.
The architecture of control software on the platform is illustrated in Figure 1. The NMI contains two parts: offline training module and online testing module. The offline training module was designed to collect training data and build the classifiers in NMI. The collected multichannel surface EMG signals and mechanical measurements were first preprocessed and segmented into continuous sliding windows. In each window, features which characterize the signal patterns were extracted and then fused into one feature vector. The feature vector in each window was labeled with activity modes (classes) and phase index based on the performing activities of prosthesis user and the states of prosthesis during the training data collection. The labeled feature vectors were then used to build a phase-dependent pattern classifier, which contains multiple sub-classifiers correlated with individually phases. The created classifier was saved and transferred to online testing module for later online evaluation.
The online testing module was used to online recognize user’s movement intent and switch the activity modes in intrinsic controller. The multichannel neuromuscular and mechanical measurements were simultaneously streamed into online testing module and transformed into feature vectors. Then the feature vectors were fed into the phase-dependent classifier which was already built in offline training module. Based on the current phase in intrinsic controller, the corresponding sub-classifier was switched on and used to recognize the user’s intent. The classification output was further post-processed and sent to intrinsic controller to switch activity modes.
A finite-state machine (FSM) based impedance controller was implemented for the intrinsic control of powered artificial legs. The impedance controller generated desired torque output on the knee joints. The finite-state machine adjusted the joint impedance according to the current state of the performing activity. For locomotion activities (i.e. level-ground walking and ramp ascent/descent), the FSM consisted of five states corresponding to five gait phases: stance flexion (STF), stance extension (STE), pre-swing (PSW), swing flexion (SWF), and swing extension (SWE); for static standing, the FSM included two phases: weight bearing (WB) and non-weight bearing (NWB). Transitions between the states were triggered by the ground reaction force and knee joint position. The transition between activity modes was controlled by the output from the online testing module. For all three modules discussed above, graphical user interface (GUI) were built, which allowed experimenters in lab to easily adjust control parameters, monitor system performance, and conduct evaluation experiments.
2. Experimental Setup
3. Experimental Protocol
This study was conducted with the approval of Institutional Review Board (IRB) at the University of Rhode Island and with informed consent of the recruited subject. One male unilateral transfemoral amputee (cause of amputation: trauma; age: 57 years; duration of amputation: 32 years) was recruited in this study. The ratio between the length of the residual limb (measured from the ischial tuberosity to the distal end of the residual limb) to the length of the non-impaired side (measured from the ischial tuberosity to the femoral epicondyle) was 51%. The subject wears a microprocessor-controlled prosthetic knee through a suction suspension socket in his daily life. Prior to the experiment in this study, this subject received several training sessions led by a physical therapist in order to let the subject to adapt to the powered device and calibrate the desired impedance in each activity mode.
Figure 4a shows seven channels of surface EMG signals measured from the thigh muscles of the subject’s residual limb when he performed hip flexion/extension, as described in Protocol 3.2.6. Figure 4b shows six gait cycles of EMG signals recorded when the subject walked on a level-ground walking path, during Protocol 3.3.4. From this figure, it can be seen that the new designed EMG electrode-socket interface can provide good quality of surface EMG signal measurements.
An engineering platform was developed in this study to easily implement, optimize, and develop true neural control of powered prostheses. The whole platform was programmed in a virtual instrumentation based development environment and implemented on a desktop PC. The control software was composed of several independent and interchangeable modules, in each of which a specific functionality was executed (i.e. NMI intent recognition, and intrinsic control). The advantage of this modular design is that each function...
No conflicts of interest declared.
This work was supported in part by the National Institutes of Health under Grant RHD064968A, in part by the National Science Foundation under Grant 0931820, Grant 1149385, and Grant 1361549, and in part by the National Institute on Disability and Rehabilitation Research under Grant H133G120165. The authors thank Lin Du, Ding Wang and Gerald Hefferman at the University of Rhode Island, and Michael J. Nunnery at the Nunnery Orthotic and Prosthetic Technology, LLC, for their great suggestion and assistance in this study.
Name | Company | Catalog Number | Comments |
Trigno Wireless EMG Sensors | Delsys, Inc. | 7 | |
Trigno Wireless EMG Base Station | Delsys, Inc. | 1 | |
Multi-functional DAQ card (PCI-6259) | National Instruments, Inc. | 1 | |
Potentiometer (RDC503013A) | ALPS Electric CO., LTD | 1 | |
Encoder (MR series) | Maxon Precision Motors, Inc. | 1 | |
Motor controller (ADS50/10) | Maxon Precision Motors, Inc. | 1 | |
24 V Power Supply (DPP480) | TDK-Lambda Americas, Inc. | 1 | |
6 DOF Load Cell (Mini58) | ATI Industrial Automation | 1 | |
Ceiling Rail System | RoMedic, Inc. | 1 | |
NI LabView 2011 | National Instruments, Inc. | 1 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved