A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We have established a cortical orthotopic glioblastoma model in mice for intravital two-photon microscopy that recapitulates the biophysical constraints normally at play during the growth of the tumor. A chronic glass window replacing the skull above the tumor enables the follow-up of the tumor progression over time by two-photon microscopy.
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumors with no curative treatments available to date.
Murine models of this pathology rely on the injection of a suspension of glioma cells into the brain parenchyma following incision of the dura-mater. Whereas the cells have to be injected superficially to be accessible to intravital two-photon microscopy, superficial injections fail to recapitulate the physiopathological conditions. Indeed, escaping through the injection tract most tumor cells reach the extra-dural space where they expand abnormally fast in absence of mechanical constraints from the parenchyma.
Our improvements consist not only in focally implanting a glioma spheroid rather than injecting a suspension of glioma cells in the superficial layers of the cerebral cortex but also in clogging the injection site by a cross-linked dextran gel hemi-bead that is glued to the surrounding parenchyma and sealed to dura-mater with cyanoacrylate. Altogether these measures enforce the physiological expansion and infiltration of the tumor cells inside the brain parenchyma. Craniotomy was finally closed with a glass window cemented to the skull to allow chronic imaging over weeks in absence of scar tissue development.
Taking advantage of fluorescent transgenic animals grafted with fluorescent tumor cells we have shown that the dynamics of interactions occurring between glioma cells, neurons (e.g. Thy1-CFP mice) and vasculature (highlighted by an intravenous injection of a fluorescent dye) can be visualized by intravital two-photon microscopy during the progression of the disease.
The possibility to image a tumor at microscopic resolution in a minimally compromised cerebral environment represents an improvement of current GBM animal models which should benefit the field of neuro-oncology and drug testing.
Glioblastoma multiforme appears as the most aggressive form of brain tumor in adults with a median survival of 12 months and a 5-years survival rate of 5%. Clinical management relies on surgery, radiotherapy and chemotherapy often used in combination. However, the effects of these treatments remain palliative1-3.
Up to now, most of neuro-oncology studies rely on techniques that are only able to provide a static view and performed on large cohorts of tumor bearing animals sacrificed at different time-points (see for example4,5). The recent development of follow-up methods based on intravital imaging allows studying glioma growth and the interactions between tumor cells and their pathophysiological microenvironment on the same animal over time. This opens the way to exclusive piece of information that was so far unachievable6. Transgenic animals expressing fluorescent tags in cells of interest may be used to study specific interactions between tumor cells and e.g. neurons in this paper.
Over the past decade, intravital two-photon microscopy7 has become a gold standard in fundamental neuro-oncology studies and preclinical trials8,9 for its ability to perform deep intravital observation of mouse brain (>500 µm below the dura-mater) with a micrometric spatial resolution10. Using intravital two-photon microscopy with orthotopical animal models implanted with a chronic cranial window11, it is possible to follow the tumor progression over time on the same mouse9,12.
One of the major drawbacks of these previously published animal models is however that they do not mimic the physical constraints that govern tumor growth as the dura-mater is not sealed after the injection of the cell suspension9,13,14. Glioma cells may leak in the extradural space transforming an orthotopic glioma model into a heterotopic one.
The animal model presented here consists in the injection of a spheroid of fluorescent glioma cells in the cerebral cortex at a depth of 200 µm followed by the sealing of the dura-mater with a cross-linked dextran gel hemi-bead and histo-compatible glue. The tumor growth is then restricted to the brain parenchyma that maintains pathophysiological physical constraints. A chronic glass window implanted above the tumor allows an easy optical access for intravital two-photon microscopy. Using transgenic animals expressing fluorescent tags in cells of interest it is possible to perform a follow-up of the glioma growth over time and to study its interaction with its microenvironment (here with neurons and vasculature highlighted with fluorescent dextrans).
All experimental procedures were performed in accordance with the French legislation and in compliance with the European Community Council Directive of November 24, 1986 (86/609/EEC) for the care and use of laboratory animals. The research on animals was authorized by the Direction Départementale des Services Vétérinaires des Bouches-du-Rhône (license D-13-055-21) and approved by the ethical committee of Provence Cote d'Azur n°14 (Project 87-04122012).
1. Spheroids Preparation
2. Spheroid and Window Implantation
3. Post-operative Care and Preparation for Imaging
Once the surgical protocol is performed (Figure 1), animals can be observed by means of fluorescent microscopy over weeks until sacrifice. An inflammatory reaction may be observed after the surgery that disappears within one or two weeks. Tumor growth can be observed by various microscopy techniques including fluorescent macroscopy and two-photon microscopy (Figure 2). Example images depicted here were realized on a fluorescence macroscope and a two-photon microscope coupled to a femtose...
This approach allows the use of optical imaging methods to monitor over days and weeks the growth of an orthotopically implanted glioma. The same animal can subsequently be subjected to virtually any brain imaging modality during the course of the pathology; yet the two-photon microscopy specific preparation offers the unique opportunity to achieve subcellular resolution inside the brain of the living animal. Our protocol presents the advantage to enforce the tumor growth into the cerebral parenchyma rather than extra-du...
The authors declare that they have no competing financial interests.
The authors warmly thank Dr. KK Fenrich, Dr. M-C. Amoureux, P. Weber and A. Jaouen for helpful discussions; M. Hocine, C. Meunier, M. Metwaly, S. Bensemmane, J. Bonnardel, the staff of the animal facility at IBDML and the staff of the PicSIL imaging platform at IBDML for technical support. This work was supported by grants from Institut National du Cancer (INCA-DGOS-INSERM6038) to GR, Agence Nationale de la Recherche (ANR JCJC PathoVisu3Dyn), Fédération pour la Recherche sur le Cerveau (FRC) to FD, by fellowships from the Fédération de la Recherche Médicale and Cancéropole PACA to CR.
Name | Company | Catalog Number | Comments |
Drill | Dremel (Germany) | 398 | any high quality surgical bone drill would suffice |
Drill burr (#1/4 Carbide Round Burr) | World Precision Instruments (USA) | 501860 (#1/4) | also sold by Harvard Apparatus |
Tissue scissors | World Precision Instruments (USA) | 14395 | |
Dumont tweezers M5S | World Precision Instruments (USA) | 501764 | |
Dental cement | GACD (USA) | 12-565 & 12-568 | |
Cyanoacrylate | Eleco-EFD (France) | Cyanolit 201 | |
Glass capillaries without filament | Clark Electromedical Instruments (UK) | GC100-15 | |
Microliter syringe (25 µl) | Hamilton (USA) | 702 | |
Micromanipulator | World Precision Instruments (USA) | Kite-R | |
T derivation (3-way stopcock - Luer lock) | World Precision Instruments (USA) | 14035-10 | |
Stereotactic frame (mouse adaptor) | World Precision Instruments (USA) | 502063 | |
Glass coverslips | Warner Instruments (USA) | CS-5R (64-0700) | |
Cross-linked dextran gel (Sephadex) G50 Coarse 100-300 µm beads | Available from various suppliers including Sigma (Germany) | ||
Eye ointment | TVM (France) | Ocry-gel | |
Fluorescence macroscope | Leica MZFLIII (Germany) | also sold by other companies | |
Two-photon microscope | Zeiss LSM 7MP (Germany) | also sold by other companies (Nikon, …) | |
Infrared tunable femtosecond laser (Maï-Taï) | Spectra Physics (USA) | also sold by other companies |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved