A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Compared to the more traditional hole-based methods, most of which require the tree to be drilled, tools with lenticular blades transform the basics of endotherapy easing the closure of the wound and allowing the natural uptake of the solutions.
In woody plants, xylem sap moves upwards through the vessels due to a decreasing gradient of water potential from the groundwater to the foliage. According to these factors and their dynamics, small amounts of sap-compatible liquids (i.e. pesticides) can be injected into the xylem system, reaching their target from inside. This endotherapic method, called "trunk injection" or "trunk infusion" (depending on whether the user supplies an external pressure or not), confines the applied chemicals only within the target tree, thereby making it particularly useful in urban situations. The main factors limiting wider use of the traditional drilling methods are related to negative side effects of the holes that must be drilled around the trunk circumference in order to gain access to the xylem vessels beneath the bark.
The University of Padova (Italy) recently developed a manual, drill-free instrument with a small, perforated blade that enters the trunk by separating the woody fibers with minimal friction. Furthermore, the lenticular shaped blade reduces the vessels' cross section, increasing sap velocity and allowing the natural uptake of an external liquid up to the leaves, when transpiration rate is substantial. Ports partially close soon after the removal of the blade due to the natural elasticity and turgidity of the plant tissues, and the cambial activity completes the healing process in few weeks.
In recent times, trunk endotherapy has progressively replaced traditional air spray methods in woody plants1-6, but this is not a recent idea. In the 15th century Leonardo Da Vinci described in detail how he was able to intoxicate apples by injecting arsenic solution into the trunk of an apple tree through deep holes made with a gimlet7. Little has changed since then: chemicals easily available in nature have gradually been replaced with more efficient synthetic active ingredients (insecticides, fungicides, bactericides, fertilizers, plant growth regulators and desiccants). Atmospheric pressure injections evolved into high pressure, and hand-driven gimlets have been replaced by modern battery drills8-10. Unfortunately, even the sharpest drill bit tears and overheats the cambial tissue responsible for the hole closure. Consequently, wound closure is delayed and large sections of the adjacent woody tissues lose their functionality ("discolored wood") from the injection site to several feet above and below11. Furthermore, unplugged holes can easily be colonized by bacteria and fungi attracted by the bleeding sap and leading to long-term internal decay, with a consequential loss of wood strength and stability12,13.
Realizing that 1) a group of longitudinal fibers separates according to a lenticular biconvex geometry (Figure 1a), and 2) sap movements into vessels fulfill the Bernoulli's principle on fluid dynamics, in 2011 the University of Padova designed a new14 drill-free endotherapic instrument with an essential lenticular, biconvex and hollow blade that enters the wood separating its fibers. In this way, inner xylematic vessels are reached with minimal friction (Figure 1b), and the temporary reduction of their section increases sap velocity, accelerating the natural uptake of an external liquid (Figure 1c, Video 1)15,16.
Due to its small dimension and unique shape, the lenticular blade does not remove cambial and woody tissues, and when compared with traditional drill holes, the wound is visibly smaller (Figure 4a). Usually, the edges of the hole are slowly compartmentalized by cambial tissues (Figure 4b1), often because of overheating during drilling. Conversely, after treating the same tree with a lenticular blade, the woody fibers revert to their previous shape, and the cambium starts to produce meris...
In spite of the acknowledged environmental advantages of tree endotherapy, up to now the main factor limiting a wider spread of this method has been related to the negative side effects of the drill holes used in traditional pressure methods (i.e. delayed wound closure, parasitic infections through the hole, production of inactive discolored wood).
In contrast with other methods, the described one was envisaged to work in compliance with host physiology, considering the delivery rate ...
Patent references of the described instrument are PD2011A000245, EP2012/063680, WIPO WO/2013/010909.
The author thanks the Patent Office of University of Padova, the TeSAF Department and Vitzani srl for their financial and technical support that allowed the development of the instrument, Dr. Jonathan Cocking (UK) for his kind cooperation and linguistic revision, the Municipality of Ponte San Nicolò PD for kind hospitality during the video shooting, and the anonymous reviewers for their purposeful, detailed suggestions.
Name | Company | Catalog Number | Comments |
BITE | Vitzani srl, Perarolo di Cadore, Italy |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved