A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
There is great variability in an individual’s risk for concussion and their corresponding recovery. A multifaceted approach to concussion evaluation is warranted; including baseline testing of athletes before participation in sport and timely evaluation post injury. The goal of this protocol is to provide an appropriate multifaceted approach to examine concussions.
Concussions are occurring at alarming rates in the United States and have become a serious public health concern. The CDC estimates that 1.6 to 3.8 million concussions occur in sports and recreational activities annually. Concussion as defined by the 2013 Concussion Consensus Statement “may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an ‘impulsive’ force transmitted to the head.” Concussions leave the individual with both short- and long-term effects. The short-term effects of sport related concussions may include changes in playing ability, confusion, memory disturbance, the loss of consciousness, slowing of reaction time, loss of coordination, headaches, dizziness, vomiting, changes in sleep patterns and mood changes. These symptoms typically resolve in a matter of days. However, while some individuals recover from a single concussion rather quickly, many experience lingering effects that can last for weeks or months. The factors related to concussion susceptibility and the subsequent recovery times are not well known or understood at this time. Several factors have been suggested and they include the individual’s concussion history, the severity of the initial injury, history of migraines, history of learning disabilities, history of psychiatric comorbidities, and possibly, genetic factors. Many studies have individually investigated certain factors both the short-term and long-term effects of concussions, recovery time course, susceptibility and recovery. What has not been clearly established is an effective multifaceted approach to concussion evaluation that would yield valuable information related to the etiology, functional changes, and recovery. The purpose of this manuscript is to show one such multifaceted approached which examines concussions using computerized neurocognitive testing, event related potentials, somatosensory perceptual responses, balance assessment, gait assessment and genetic testing.
Concussions are occurring at alarming rates in the United States and have garnered quite a lot of attention as a public health concern.1-3 US Centers for Disease Control and Prevention (CDC) estimates that 1.6 to 3.8 million concussions occur in sports and recreational activities annually.4,5 Concussion as defined by the 2013 Concussion Consensus Statement2 “may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an ‘impulsive’ force transmitted to the head.” Concussion may result in neuropathological and/or substructural changes that may result in functional disturbances.2 These deficits may persist for several weeks. It is not uncommon for athletes to experience increased self-reported symptoms, decrements in postural control, and decreased neurocognitive function even 14 days following the initial injury.6 The prolonged nature of symptoms, the inconsistent identification of concussions, and the variability in preinjury abilities often lead to complex and non standardized return-to-play decisions by physicians, uncertain recovery times, and possibly long-term sequelae.7-9
Following a concussion, an individual may experience both short-term and long-term effects. The short-term effects of sport related concussions may include changes in playing ability, confusion, memory disturbance, the loss of consciousness, slowing of reaction time, loss of coordination, headaches, dizziness, vomiting, changes in sleep patterns and mood changes. These symptoms typically resolve in a matter of days.2,10 However, while some individuals recover from a single concussion rather quickly, many experience lingering effects that can last for weeks or months following the injury.10,11, 12 These symptomatic disturbances to daily function can be quantified using cognitive and performance related tests. While no one single test should determine diagnosis of a concussion, a battery of tests and known relationships between tests can aid the medical staff in making diagnoses, return to classroom, and return to play decisions.2
There is great variability in an individual’s risk for concussion and their corresponding recovery.11 The factors related to concussion susceptibility and recovery time course are not well known or understood. Several factors have been suggested that may impact an individual’s concussion susceptibility and recovery. These factors include the individual’s concussion history, the severity of the initial injury, history of migraines, history of learning disabilities, history of psychiatric comorbidities, and possibly genetic factors.7, 9, 13, 14
Many studies have individually investigated specific factors for both the short-term and long-term effects of concussions, recovery time course, and genetics as a factor of concussions.4,8,15-17 What has not been clearly established is an effective multifaceted approach to concussion evaluation that would yield valuable information related to the etiology, functional changes, and recovery from concussion. Due to the variety of symptoms and the uncertain time course of recovery, a multifaceted approach to concussion evaluation is warranted and this should include baseline testing of all athletes prior to participation in practice and competition as well as timely evaluation post injury. A recent review suggests that neurocognitive assessments may be more sensitive to recovery from a concussion than monitoring symptoms alone.18 It may be that there are other objective measures that may be better indicators of recovery from concussion.
For this protocol, we use several tasks to assess various components of the system to see how they are impacted by a concussion. A computerized neurocognitive test can assess memory, processing speed, problem solving skills, cognitive efficiency and impulse control.6 EEG with auditory and visual processing tasks can be used to assess neuroefficiency through the examination of event related potentials.19 A somatosensory discrimination task can be used to assess peripheral and central sensory processing capabilities.20 Balance and gait measures can be used to assess functional performance capabilities.6,21 In addition, we assess various genotypes that may have relations to concussion history, concussion recovery and cognitive function.22 We baseline test our varsity student-athletes on this battery of tests and repeat tests if they incur a concussion when asymptomatic.
The purpose of this project is to assess potential short-term and long-term decrements in performance as a result of concussions using genetic, neurocognitive, electrophysiological, behavioral, somatosensory, balance and gait measures. Understanding the potential mechanisms that may be related to various symptoms and impairments that occur with a concussion are important in furthering our knowledge about concussion. Greater knowledgle about these changes may in the future aid in concussion diagnosis as well as concussion management as it relates to return to play and return to academics.
All measures described below are taken at baseline (before student-athlete participation in sport). Our current protocol is to complete the computerized neurocognitive testing at 48 hr along with the balance protocol because we believe that these provide useful information regarding recovery and possible return-to-play and return-to-academics. When the student-athlete reports asymptomatic they again return to the laboratory where all baseline measures are again conducted, except for genetic testing. The full protocol, baseline and asymptomatic, takes approximately 90 min to complete in one testing period.
Access restricted. Please log in or start a trial to view this content.
All the procedures described below have been approved by the Elon’s Institutional Review Board.
1. Computerized Neurocognitive Testing
2. Event Related Potentials
3. Somatosensory Perceptual Responses
4. Balance Protocol
5. Gait Assessment
6. Genetics
Access restricted. Please log in or start a trial to view this content.
Computerized Neurocognitive Testing
An example of results for the computerized neurocognitive test can be seen in Figure 1. The computer program elicits composite scores on Verbal Memory, Visual Memory, Visual Motor Speed and Reaction Time which are often used to make return-to-play and return-to-learn concussion management protocols. The verbal and visual memory composites evaluate attentional processes, learning and memory. Visual motor speed measures visual...
Access restricted. Please log in or start a trial to view this content.
The goal of this multidimensional approach to baseline concussion testing is twofold: 1) to better understand the impact of a concussion (acute and long term) on the neuromuscular system; 2) to help the sports medicine staff make return to play decisions (they primarily use neurocognitive testing as has been suggested by McCrory).26 This multifaceted approach to concussion evaluation provides valuable information related to the etiology, functional changes, and recovery from concussion. Little is understood ab...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
This study was supported by grants from the American Medical Society for Sports Medicine. The authors would like to acknowledge and show our appreciation for our undergraduate research students including David Lawton, Drew Gardner, Mark Sundman, Kelsey Evans, Graham Cochrane, Jordan Cottle and Jack Halligan for their assistance in data collection over the past four years.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
ImPACT | ImPACT, Pittsburgh, PA | Neurocognitive concussion testing | |
EEG | EGI, Eugene, OR | EEG 32-channel system | |
Stim2 | Compumedics Neuroscan, Charlotte, NC | Software for task presentation for flanker task and auditory oddball | |
NetStation | EGI, Eugene, OR | Software for data collection and analysis of EEG | |
Sensory Device | Cortical Metrics | Sensory testing | |
Balance System SD | Biodex Medical Systems, Inc., Shirley, NY | balance testing | |
GAITRite | CIR systems, Inc., Sparta, NJ, USA | Gait analysis | |
PCR | Applied Biosystems, Foster City, CA | Genetic Analysis | |
Matlab | Mathworks, Natick, MA, USA | Gait and balance analysis |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved