A subscription to JoVE is required to view this content. Sign in or start your free trial.
Synthesis, activation, and characterization of intentionally designed metal-organic framework materials is challenging, especially when building blocks are incompatible or unwanted polymorphs are thermodynamically favored over desired forms. We describe how applications of solvent-assisted linker exchange, powder X-ray diffraction in capillaries and activation via supercritical CO2 drying, can address some of these challenges.
Metal-organic frameworks have attracted extraordinary amounts of research attention, as they are attractive candidates for numerous industrial and technological applications. Their signature property is their ultrahigh porosity, which however imparts a series of challenges when it comes to both constructing them and working with them. Securing desired MOF chemical and physical functionality by linker/node assembly into a highly porous framework of choice can pose difficulties, as less porous and more thermodynamically stable congeners (e.g., other crystalline polymorphs, catenated analogues) are often preferentially obtained by conventional synthesis methods. Once the desired product is obtained, its characterization often requires specialized techniques that address complications potentially arising from, for example, guest-molecule loss or preferential orientation of microcrystallites. Finally, accessing the large voids inside the MOFs for use in applications that involve gases can be problematic, as frameworks may be subject to collapse during removal of solvent molecules (remnants of solvothermal synthesis). In this paper, we describe synthesis and characterization methods routinely utilized in our lab either to solve or circumvent these issues. The methods include solvent-assisted linker exchange, powder X-ray diffraction in capillaries, and materials activation (cavity evacuation) by supercritical CO2 drying. Finally, we provide a protocol for determining a suitable pressure region for applying the Brunauer-Emmett-Teller analysis to nitrogen isotherms, so as to estimate surface area of MOFs with good accuracy.
Metal-organic frameworks (MOFs) are a class of crystalline coordination polymers consisting of metal-based nodes (e.g., Zn2+, Zn4O6+, Zr6O4(OH)412+, Cr3(H2O)2OF6+, Zn2(COO)4) connected by organic linkers (e.g., di-, tri-, tetra- and hexacarboxylates, imidazolates1, dipyridyls; see Figure 1).2 Their highly ordered (and thus amenable to high levels of characterization) structures, combined with their exceptional surface areas (reaching 7,000 m2/g)3 end....
1. Synthesis of the Parent MOF (Br-YOMOF)
The use of HCl during MOF synthesis is often beneficial for the growth of high quality MOF crystals. As it slows down the deprotonation of the carboxylate (and the binding of the linkers to the metal centers), it promotes growth of larger crystals and prevents formation of amorphous and polycrystalline phases, which may form if the reaction is allowed to proceed more rapidly. In fact, as it can be seen in Figure 3, the pillared-paddlewheel MOFs that are produced during this reaction form large, yellow cr.......
MOF crystallization is a delicate procedure that can be inhibited by even slight variations in the multiple parameters that describe the synthetic conditions. Therefore, special care needs to be taken when preparing the reaction mixture. The purity of the organic linkers should be confirmed by 1H NMR prior to the onset of the synthesis, as the presence of even small amounts of impurities is known to prevent crystallization altogether or result in the formation of undesired crystalline products. Polar, high-boi.......
The authors have nothing to disclose.
This research was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-12ER16362.
....Name | Company | Catalog Number | Comments |
Name of Material/ Equipment | Company | Catalog number | Comments/Description |
6’’ Pasteur pipet | VWR | 14673-010 | For transferring MOF crystals |
9’’ Pasteur pipet | VWR | 14673-043 | For separating liquid solution from MOF crystals |
1-dram vials | VWR | For preparation of NMR samples | |
2-dram vials | VWR | 66011-088 | For small-scale SALE reactions |
4-dram vials | VWR | 66011-121 | For de novo pillared-paddlewheel MOF synthesis |
NMR tube Grade 7 | VWR | 897235-0000 | |
NMR instrument Avance III 500 MHz | Bruker | N/A | |
Oven | VWR | 414004-566 | For solvothermal MOF reactions |
Sonicator | Branson | 3510-DTH | |
Balance | Mettler-Toledo | XS104 | |
Superctitical CO2 dryer | Tousimis™ Samdri® | 8755B | For activation of pillared-paddlewheel MOFs |
Activation dish | N/A | N/A | |
Tristar II 3020 | Micromeritics | N/A | For collection of gas isotherms/measurement of BET surface area |
X-ray diffractometer | Bruker | N/A | Kappa geometry goniometer, CuKα radiation and Powder-diffraction data collection plugin. |
Capillary tubes | Charles-Supper | Boron-Rich BG07 | Thin walled Boron Rich capillary 0.7mm diameter |
Beeswax | Huber | WAX | sticky wax for specimen fixation |
Modeling Clay | Van Aken | Plastalina | |
CO2 (l) | N/A | N/A | |
N2 (l) | N/A | N/A | |
N2 (g) | N/A | N/A | |
DMF | VWR | MK492908 | For MOF reactions and storage |
Ethanol | Sigma-Aldrich | 459844 | For solvent exchange before supercritical drying |
Zn(NO3)2 × 6 H2O | Fluka | 96482 | |
dped | TCI | D0936 | |
dpni | Synthesized according to a published procedure | ||
Br-tcpb | Synthesized according to a published procedure | ||
D2SO4 | Cambridge Isotopes | DLM-33-50 | For MOF NMR |
d6-DMSO | Cambridge Isotopes | DLM-10-100 | For MOF NMR |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved