A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The experimental intracranial pressure-controlled blood shunt subarachnoid hemorrhage (SAH) model in the rabbit combines the standard procedures — subclavian artery cannulation and transcutaneous cisterna magna puncture, which enables close mimicking of human pathophysiological conditions after SAH. We present step-by-step instructions and discuss key surgical points for successful experimental SAH creation.
Early brain injury and delayed cerebral vasospasm both contribute to unfavorable outcomes after subarachnoid hemorrhage (SAH). Reproducible and controllable animal models that simulate both conditions are presently uncommon. Therefore, new models are needed in order to mimic human pathophysiological conditions resulting from SAH.
This report describes the technical nuances of a rabbit blood-shunt SAH model that enables control of intracerebral pressure (ICP). An extracorporeal shunt is placed between the arterial system and the subarachnoid space, which enables examiner-independent SAH in a closed cranium. Step-by-step procedural instructions and necessary equipment are described, as well as technical considerations to produce the model with minimal mortality and morbidity. Important details required for successful surgical creation of this robust, simple and consistent ICP-controlled SAH rabbit model are described.
Aneurysmal subarachnoid hemorrhage (SAH) is one of the most life threatening neuropathological conditions, frequently leading to permanent neurological damage or death1. Past research has focused on delayed cerebral vasospasm (DCVS) as the primary etiology of neurological deficits associated with SAH2. However, the generally poor clinical outcomes of patients suffering from SAH after treatment of vasospasm has led to an expansion of the research focus to include the effects of early brain injury (EBI) after SAH3. Greater understanding of the significance of both EBI and DCVS in contributing to poor clinical outcomes after SAH is essential for the development of more effective therapeutic strategies.
Up to now, single and double autologous blood injection into the cisterna magna has been the standard method for SAH induction for the study of DCVS2-6. Though commonly used in previous studies, this model most likely does not reproduce the neuropathological key changes associated with SAH induced EBI7. In contrast, endovascular perforation is known to produce severe acute pathophysiological changes that partially mimic the symptoms of EBI7.
This report describes a novel rabbit model of SAH designed to enable investigation of both EBI and DCVS, thereby allowing more accurate characterization of SAH-induced pathology8-10. With the described technique, the standard cisterna magna model is adapted by connecting the arterial system of the subclavian artery and the cisterna magna via an extracorporeal shunt. The blood flow is thereby linked to the rabbit’s physiology and driven by the pressure gradient between the arterial blood and intracranial pressure. The bleeding stops when intracerebral pressure (ICP) equals diastolic blood pressure and the blood in the shunt system coagulates. Utilizing the host’s physiology reduces examiner-dependent SAH induction, leading to a more consistent model of SAH that reliably produces both EBI and DCVS phenotypes3,8-10.
Access restricted. Please log in or start a trial to view this content.
Three month old female New Zealand rabbits weighing 2.5 – 3.5 kg were used for this procedure. The study was performed in accordance with the National Institutes of Health guidelines for the care and use of experimental animals and with the approval of the Animal Care Committee of the Canton of Bern, Switzerland (approval #105/13). All surgical procedures were performed under sterile conditions at the Experimental Surgical Institute of the Department of Clinical Research at Bern University Hospital in Bern, Switzerland. A veterinary anesthesiologist monitored the animals during surgery and throughout recovery.
1. Animal Preparation, Positioning and Subclavian Artery Cannulation
2. Blood Pressure and Arterial Blood Gas Monitoring
3. Baseline Digital Subtraction Angiography
4. Rotation to Prone Position
5. Cisterna Magna Puncture
6. Installation of Intracranial Pressure and Cerebral Blood Flow Monitoring
7. Shunt Induction
8. Postoperative Management
9. Follow up Digital Subtraction Angiography to Assess DCVS at Day 3
Access restricted. Please log in or start a trial to view this content.
The rabbit blood shunt model of SAH described in this report produces EBI in the hippocampus (Figure 2A, B), basal cortex (Figure 2A, B), and cerebral vasculature (Figure 2C) as early as 24 hr after injury and shows a characteristic blood distribution (Figure 2D)8. In addition, the model triggers moderate to severe degrees of DCVS on day three after SAH induction (Figure 3)10. The mortality rate is ...
Access restricted. Please log in or start a trial to view this content.
The shunt model produces pathology similar to that observed in humans after acute SAH3,8,10. It has been suggested that EBI may exacerbate, maintain and even trigger DCVS12, and as such this model may aid in investigating both the early and late DCVS phases, including EBI and DCVS interactions following SAH. In particular, repeatable in vivo DCVS monitoring techniques including DSA13, computed tomography angiography14, and transcranial Doppler15 are more rea...
Access restricted. Please log in or start a trial to view this content.
None. The authors have no financial or commercial interest in any of the drugs, materials, or equipment used. No specific funding was received for this work. The authors are solely responsible for the design and conduct of the presented study and report no conflict of interest concerning the materials and methods used in this study or the findings specified in the paper. They confirm the adherence of ethical standards. The study was performed in accordance with the National Institutes of Health guidelines for the care and use of experimental animals and with the approval of the Animal Care Committee of the Canton of Bern, Switzerland (approval #109/07 and #107/09).
The authors thank Laurie von Melchner, Bern University Hospital, Department of Neurosurgery, Bern, Switzerland, for proofreading and editing the manuscript and Paskus Jeremiah, Boston Children’s Hospital, Boston, MA for proofreading the initial draft. We appreciate the skillful management of animal care, anesthesia, and operative assistance from Daniel Mettler, DVM, Max Müller, DVM, Daniel Zalokar, and Olgica Beslac, Experimental Surgical Institute, Department of Clinical Research, University of Bern, Bern, Switzerland. We thank Michael Lensch, Head Research Nurse, Department of Intensive Care Medicine, Bern University Hospital and University of Bern, Bern, Switzerland, for real-time data monitoring and post-processing of the physiological parameters. We thank Edin Nevzati, Carl Muroi, and Salome Erhardt, for their excellent laboratory technical and operative assistance.
This work was supported by the Department of Intensive Care Medicine, Bern University Hospital and University of Bern, Bern, Switzerland, the Department of Clinical Research, University of Bern, Bern, Switzerland, and the Research Fund from the Kantonsspital Aarau, Aarau, Switzerland. We thank Elsevier, for reprint permission for Figures 1 and 2.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Equipment | |||
Operation microscope | Zeiss, Jena, Germany | Zeiss, OPMI-MD surgical microscope | |
Surgical equipment | B. Braun, Germany | Forceps medical no. 5; vessel scissors 8 cm; microclip 4 mm | |
Respirator | Hugo Sachs | ||
Hair clipper | 3M Surgical Clipper | Starter Kit 9667A | |
Body warm plate | FHC | ||
Blood gas analyzer | Radiometer, Copenhagen, Denmark | ABL 725 | |
Cardiac monitoring | Camino Multi-Parameter Monitor, Integra, Plainsboro, NJ, US | AP-05 | |
Software analysis | BIOPAC Systems, Inc., Goleta, CA, USA | Biopac MP100 and acqKnowledge software,version 3.8.1 | |
Software analysis | ImagePro Discovery, MediaCybernetics, Silver Spring, MD, USA | Image-Pro Plus version | |
Angiography apparatus | DFP 2000 A-Toshiba | MIIXR0001EAA | |
ICP monitor | Camino Laboratories, San Diego, CA, USA | ICP monitor, Model 110-4B | |
Blood flow monitor | Oxford Optronix Ltd., Oxford, UK | CAL KIT microsphere solution | |
Laser-Doppler flowmetry fine needle probes | Oxford Optronix Ltd., Oxford, UK | MNP110XP, 0.48 mm diameter | |
Pressure tube | B. Braun, Germay | PE 1.0 mm × 2.0 mm | |
Anesthesia monitor | GE Medical Systems, Switzerland | Datex S5 Monitor | |
Material | |||
20 G vascular catheter | Smiths Medical | Jelco i.v. catheter, REF 4057 | |
5.5 F three-lumen central venous catheter | Connectors, Tagelswangen, Switzerland | Silicone catheter STH-C040 | |
22 G x 40 mm needle | Emergo Group Inc., Netherlands | ||
High-speed microdrill | Stryker, Solothurn, Switzerland | 5400-15 | |
Bone wax | Ethicon, Johnson & Johnson,NJ, USA | ETHW31G | |
Bipolar forceps | Aesculap, Inc., PA, US | US349SP | |
Ketamin | Any generic product | ||
Xylazine | Any generic product | ||
Buprenorphine | Any generic product | ||
Fentanyl | Any generic product | ||
Transdermal fentanyl matrix patches | Any generic product | ||
Lidocaine 1% | Any generic product | ||
4% papaverin HCl | Any generic product | ||
Neomycin sulfate | Research Organics Inc., OH, USA | Any generic product | |
Povidone-iodine | Any generic product | ||
0.9% sodium chloride | Any generic product | ||
Iopamidol | Abott Laboratories, IL, USA | Any generic product | |
3-0 resorbable suture | Ethicon Inc., USA | VCP824G | |
5-0 non absorbable suture | Ethicon Inc., USA | 8618G | |
4-0 polyfilament sutures | Ethicon Inc., USA | VCP284G |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved