A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Replication is one of the processing techniques used for the production of porous metal sponges. In this paper one implementation of the method for the production of open celled porous aluminum is shown in detail.
Metal foams are interesting materials from both a fundamental understanding and practical applications point of view. Uses have been proposed, and in many cases validated experimentally, for light weight or impact energy absorbing structures, as high surface area heat exchangers or electrodes, as implants to the body, and many more. Although great progress has been made in understanding their structure-properties relationships, the large number of different processing techniques, each producing material with different characteristics and structure, means that understanding of the individual effects of all aspects of structure is not complete. The replication process, where molten metal is infiltrated between grains of a removable preform material, allows a markedly high degree of control and has been used to good effect to elucidate some of these relationships. Nevertheless, the process has many steps that are dependent on individual “know-how”, and this paper aims to provide a detailed description of all stages of one embodiment of this processing method, using materials and equipment that would be relatively easy to set up in a research environment. The goal of this protocol and its variants is to produce metal foams in an effective and simple way, giving the possibility to tailor the outcome of the samples by modifying certain steps within the process. By following this, open cell aluminum foams with pore sizes of 1–2.36 mm diameter and 61% to 77% porosity can be obtained.
Metal foams have attracted a large amount of interest and research effort in recent years as shown by the large body of work cited in wide ranging review articles such as Banhart1, Conde et al.2 or more recently Goodall and Mortensen3. Among the methods used for production of the material, the replication process is distinguished by its experimental simplicity and the degree of control over the final foam structure that can be offered. It should be noted that although in the literature such materials are often described as foams (and are here) as they are not produced by bubbles of gas within a liquid they are more appropriately called porous metals or microcellular metals.
The first report of the replication process was in the early 1960s4, and it has been developed further at different stages since then, with notable advances by the research group of Mortensen at the Ecole Polytechnique Federale de Lausanne in Switzerland.
The process relies on the casting of the metal around a preform of particles that defines the shape of the porosity in the final material2, 5. After cooling the preform can be removed by solvent leaching or pyrolysis that causes oxidation. A popular use of this technique utilizes NaCl as a space holder to produce aluminum5-10 or aluminum alloy foams11-14. NaCl has several advantages such as being readily accessible, non-toxic and can be removed from the foam by dissolution in water. By having a melting point of 801 °C, it can be used with metals that have a melting point lower than this value, most commonly aluminum, but examples also exist of the use with materials such as bulk metallic glasses, by humidifying a mix of liquid palladium-based bulk metallic glass alloy and NaCl granules15. Substitution of the NaCl with higher melting point materials also permits the production of foams from higher melting point metals16. This may include other water-soluble materials, or insoluble ones including different types of sand. In this form the process becomes more like conventional sand casting as to remove the sand, high pressure water jets17, 18 or different forms of washing19 or agitating20 are required.
The essential process21 proceeds by taking grains of NaCl and placing them in a mold4, 22, 23. The basic method has been used to make aluminum and aluminum alloy foams24-26 for a wide range of foam behavior investigations. Additional steps have been introduced to further control the density and to increase the interconnectivity of the pores; these include the densification of the preform. To densify the preform, sintering has been employed27, 28 and has been used in different experiments since13, with the sintering behavior of NaCl based on temperature, granule size and density described by Goodall et al.29. Another method used for this purpose is cold isostatic pressing (CIP)5, 30; this is a faster technique that can achieve a larger spectrum of comparable densities. The procedure can also be performed in the solid state with metal powder and NaCl grains, and is then sometimes called the Sintering and Dissolution Process31.
A full survey of the use of the replication technique to date and comparison with other techniques is given in Goodall and Mortensen3.
In this work we report in detail equipment and experimental protocols that have been used for the processing of metal foams by the replication method, and which are relatively easy to implement in a research laboratory setting. It is important to acknowledge that other versions of the equipment, with different capabilities exist in other research groups, and that while the equipment presented here is suitable to process the material, it is not the only version or protocol that can be made to work. In any case, a thorough understanding of any particular method is essential for experimental success.
The precise protocols used are detailed below. The protocol variations (A, B, C and D) have small changes between them, principally intended to alter the density of the foams produced. The porosity has been calculated from measurements of the bulk weight of the samples, their volume and the density of aluminum (2.7 g/cm3). In developing the methods described for aluminum foam production by replication, attempts have been made to reduce the amount of advanced equipment to the smallest possible extent, such that the method is as easy to implement as possible. Other variations that may be used at different stages are discussed later.
Access restricted. Please log in or start a trial to view this content.
NOTE: The instructions below are for Protocol A (Figure 1). Modifications for Protocol B, C, and D are listed as well.
1. Aluminum Bar Preparation
2. Furnace Preparation
3. Preform Preparation
NOTE: Depending on the height of the foam aimed for, vary the amount of NaCl to use for infiltration between 100 g and 300 g.
4. Mold Preparation
5. Infiltration
6. Sample Extraction
Access restricted. Please log in or start a trial to view this content.
In Figure 4 the morphology of the NaCl grains can be seen (angular and spherical), for illustrative purposes. The foams obtained with Protocol A were made using angular shaped grains and the rest were made with the spherical grains. It was found that the use of different shape NaCl grains had no observed effect on the porosity obtained in the samples.
From the results we can determine that samples a, b, and c (made with Protocol A), are on average 63% porous (Figure 5<...
Access restricted. Please log in or start a trial to view this content.
The basic method described here has been used in different forms by other researchers. Some of the key variants that allow foams of different types to be created are discussed. In characterizing these foams we have measured the porosity, as this is a quick and easy assessment to make, but characterization of other structural characteristics, such as pore size, specific surface area or strut thickness might be required to obtain a full understanding of foam characteristics for different applications. In practice, for prod...
Access restricted. Please log in or start a trial to view this content.
The authors declare that they have no competing financial interests.
The corresponding author would like to acknowledge the Mexican Government’s National Council of Science and Technology CONACYT for provision of a scholarship.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Salt | Hydrosoft | Granular Salt 25 kg 855754 | http://www.travisperkins.co.uk/p/hydrosoft-granular-salt-25kg/855754/3893446 |
Aluminum | William Rowland | Aluminum Ingots 99.87% pure 25 kg drum | http://www.william-rowland.com/products/high-purity-metals#product-id-1 |
Crucible | Morgan Advance Materials | Syncarb Crucible | http://www.morganmms.com/crucibles-foundry-products/crucibles/syncarb/ |
Furnace | Elite Thermal Systems | TLCF10/27-3216CP & 2116 O/T | http://www.elitefurnaces.com/eng/products/furnaces/1200%20Top%20Loading%20Furnaces.php |
Bar Mold | The University of Sheffield | Custom Made | Stainless Steel 304, 15 cm height, 5 cm inner diameter, 6 cm outer diameter |
Band Saw | Clarke | CBS45MD (6" x 4 1/2") 370W 060710025 | http://www.machinemart.co.uk/shop/product/details/cbs45md-41-2in-x-6in-metal-cutting-ban |
Sandpaper | Wickes | Specialist wet & dry sandpaper 501885 | http://www.wickes.co.uk/Specialist-Wet+Dry-Sandpaper-PK4/p/501885 |
Sieves | Fisher Scientific | Fisherbrand test sieves 200 mm diamater | http://www.fisher.co.uk/product/brand_listing.php/F/Fisherbrand/Sieve |
Balance | Precisa | XB 6200C | http://www.precisa.co.uk/precision_balances.php |
Boron Nitride | Kennametal | 500 ml spray can | http://www.kennametal.com/content/dam/kennametal/kennametal/common/Resources/Catalogs-Literature/Advanced%20Materials%20and%20Wear%20Components/B-13-03401_ceramic_powders _brochure_EN.pdf |
Infiltration Mold, Base and Lid | The University of Sheffield | Custom Made | Stainless Steel 304, 15 cm height, 5.1 cm inner diameter, 6 cm outer diameter |
Cylindrical Mold | The University of Sheffield | Custom Made | Low carbon steel 1020, 15 cm height, 5 cm inner diameter, 6 cm outer diameter |
Graphite Gasket | Gee Graphite | Geegraf Stainless Steel Reinforced Graphite 1 mm thick | http://www.geegraphite.com/steel_reinforced.html |
Mallet | Thor Hammer Co. Ltd. | Round Solid Super Plastic Mallet | http://www.thorhammer.com/Mallets/Round/ |
Wrench | Kennedy Professional | 13 mm Ratchet Combination Wrench KEN5822166K | https://www.cromwell.co.uk/KEN5822166K |
Nuts | Matlock | M8 Steel hex full nut galvanized | https://www.cromwell.co.uk/CTL6400068J |
Washers | Matlock | M8 Form-A steel washer bzp | https://www.cromwell.co.uk/CTL6451208H |
SS Nuts | Matlock | M8 A2 st/st hex full nut | https://www.cromwell.co.uk/CTL6423008F |
SS Washers | Matlock | M8 A2 st/st Form-A washer | https://www.cromwell.co.uk/CTL6464008H |
Stainless Steel Studding | Cromwell | M8 x 1 Mtr A2 Stainless Steel Studding QFT6397080K | https://www.cromwell.co.uk/QFT6397080K |
Valves | Edwards | C33205000 SP16K, Nitrile Diaphragm | https://www.edwardsvacuum.com/Products/View.aspx?sku=C33205000 |
Fitting Cross | Edwards | C10512412 NW16 Cross Piece Aluminum | https://www.edwardsvacuum.com/Products/C10512412/View.aspx |
Fitting T | Edwards | C10512411 NW16 T-Piece Aluminum | https://www.edwardsvacuum.com/Products/C10512411/View.aspx |
Vacuum Pump | Edwards | A36310940 E2M18 200-230/380-415V, 3-ph, 50 Hz | http://www.edwardsvacuum.com/Products/View.aspx?sku=A36310940 |
Dial Gauge | Edwards | D35610000 CG16K, 0-1,040 mbar | http://www.edwardsvacuum.com/Products/View.aspx?sku=D35610000 |
Argon Gas | BOC | Pureshield Argon Gas | http://www.boconline.co.uk/en/products-and-supply/industrial-gases/inert-gases/pureshield-argon/pureshield-argon.html |
Stainless Steel Hose | BOC | Stainless Steel Hose | http://www.boconline.co.uk/en/products-and-supply/speciality-equipment/hoses-and-pigtails/index.html |
Regulator | BOC | HP 1500 Series Regulator | http://www.boconline.co.uk/en/products-and-supply/speciality-equipment/regulators/single-stage-regulators/hp1500-series/hp1500-series.html |
Copper Block | William Rowland | Copper Ingot 25 kg | http://www.william-rowland.com/products/high-purity-metals#product-id-18 |
Vise | Record | T84-34 H/Duty Eng Vice 4 1/2" Jaws REC5658326K | https://www.cromwell.co.uk/REC5658326K |
Beaker | Fisher Scientific | 11567402 - Beaker, squat form, with graduations and spout 800 ml | https://webshop.fishersci.com/insight2_uk/getProduct.do;jsessionid=16D5812 D71B8CB37B475E94281E2BEA 5.ukhigjavappp11?productCode=11567402&resultSet Position=0 |
Stirring Hot Plate | Corning | Corning stirring hot plate Model 6798-420d | http://www.corning.com/lifesciences/us_canada/en/technical_resources/product_guid/shp/shp.aspx |
[header] | |||
Stir Bar | Fisher Scientific | 11848862 - PTFE Stir bar + Ring 25x6 mm | https://webshop.fishersci.com/insight2_uk/getProduct.do;jsessionid=16D5812 D71B8CB37B475E94281E2BEA 5.ukhigjavappp11?productCode=11848862&resultSet Position=0 |
Air dryer | V05 | V05 Max Air Turbo Dryer DR-120-GB | http://reviews.boots.com/2111-en_gb/1120627/v05-v05-max-air-turbo-hair-dryer-dr-120-gb-reviews/reviews.htm |
Ceramic Sheet | Morgan Advance Materials | Kaowool Blanket 2 mm thick | http://www.morganthermalceramics.com/downloads/datasheets?f[0]=field_type%3A84 |
Vibrating Table | Peveril Machinery | Pevco Vibrating Table 1.25 m x 0.625 m x 0.6 m | https://peverilmachinery.co.uk/equipment/vibrating-tables |
Access restricted. Please log in or start a trial to view this content.
A journal reference was corrected in the publication of Casting Protocols for the Production of Open Cell Aluminum Foams by the Replication Technique and the Effect on Porosity. Reference 21 and 22 were originally merged together as one reference. They have been separated into references 21 and 22 in the article. The reference numbers have been updated in the article to reflect this additional reference citation. It has been updated from:
to:
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved